
Automatic Estimation of Di�erential Evolution

Parameters using Hidden Markov Models

Marwa Keshk, Hemant Singh, Hussein Abbass

University of New South Wales, School of Engineering and Information Technology,
Canberra, ACT 2600, Australia.

{m.keshk,h.singh,h.abbass}@adfa.edu.au

Abstract. Di�erential Evolution (DE) has been successful in solving
practical optimization problem. However, similar to other optimization
algorithms, the search performance of DE depends on the e�cacy of the
adopted search operators. The ability to adapt these operators within an
evolutionary run enhances their ability to �nd better quality solutions.
This adaptation process requires learning algorithms capable of com-
pressing the information embedded within a population into meaningful
estimates to adapt the search operators.
Hidden Markov Models (HMMs) are learning algorithms designed to es-
timate parameters by compressing information collected from on a state
space. In this paper, we use HMMs to compress the information within
a population and use the model for adapting the DE parameters. The
resultant DE-HMM algorithm dynamically adjusts the two basic param-
eters of DE. After a thorough testing of this method and conducting an
extensive comparison of its performance on the CEC2005 and CEC2014
dataset, it is shown that the proposed DE-HMM algorithm is able to
achieve better results compared with the classical DE and other state-of-
the-art methods. On average, the algorithm can achieve this performance
faster than other methods in the literature.

Keywords Di�erential Evolution (DE), Hidden Markov Models, self-adaptive
parameter control

1 Introduction

The Di�erential Evolution (DE) algorithm, �rst proposed by Storn and Price
in 1995 [1], has been successful for solving many real-life problems, including
data clustering [2, 3], robotic system control [4, 5], wireless networks sensing [6],
hydropower production [7], �ow shop scheduling [8], and chemical engineering [9]
among others.

DE has three basic operators (mutation, crossover, and selection) and three
control parameters (a scaling factor, crossover rate and population size), which
guide its evolutionary search. The Scaling Factor (F) is a positive-valued control
parameter that a�ects the ampli�cation of di�erence vectors (i.e., approximate

2 Keshk, Singh, Abbass

gradients). In essence, it is similar to a step length in classical optimization and
generates a mutant child by moving a parent in the direction(s) of the di�erence
vectors. The Crossover Rate (CR) controls the rate of genetic transmission from
a parent to the mutant vector to generate a potential new child in the population.
This child is only a potential one because the replacement strategy may reject
placing it in the new population if its performance is inferior to that of its
parent. The Population Size (PS) represents the number of solution vectors
sampled in the �rst generation, a setting which is maintained throughout the
run in subsequent generations.

The performance of DE is sensitive to the control parameters [10]. The set-
tings of these parameters can, in itself, be a complex optimization problem, as
discussed below:

1. Setting the parameters is problem-dependent and normally discussed in the
context of the `no free lunch' theorem for optimization problems. As their
con�gurations represent di�erent search biases, a parameter setting may be
optimal for one optimization problem but may obtain inferior results for
another [11].

2. The value of parameters during search are evolution-dependent, with dif-
ferent stages in the search process possibly requiring a di�erent setting of
parameters [12].

3. As the parameters interact nonlinearly in a complex manner, it is challenging
to understand how F and CR interact together to improve an evolutionary
search [13].

To address the above challenges, we propose a novel self-adaptive parameter
control algorithm for improving the performance of DE using Hidden Markov
Models (HMMs). The resultant algorithm is referred to as DE-HMM, in which
the DE parameters are adjusted in each generation. The �rst challenge is over-
come by using HMM to dynamically set the parameters for DE. The second
challenge is overcome by coupling each chromosome in evolution with its own
set of parameters (F and CR). The third challenge is overcome by estimating F
as a function of CR.

Our use of HMMs is motivated from two perspectives. First, many studies
have used �nite Markov models to analyze the behavior of evolutionary compu-
tation methods. As early as 1980s, Goldberg and Segrest [14] used �nite Markov
chains to model the behavior of simple genetic algorithms. Mahfoud [15] built
on that work and used �nite Markov models to predict the expected drift time
for a Boltzmann tournament selection strategy. Davis and Principe [16] proved
that there is a unique stationary distribution for simple genetic algorithm when
mutation is used for parameter control. In essence, the mutation operator acts
as a source of perturbation to the population, while selection impacts the transi-
tions from one population to another. Markov chains have been used extensively
to analyze the behavior of evolutionary computation in recent times. An old,
but very useful survey is presented in [17], and more recent studies on the topic
including [18, 19].

Title Suppressed Due to Excessive Length 3

Second, and despite the signi�cant amount of work that went into using
Markov Chains to analyze the behaviour of evolutionary computation techniques,
no study has actually used Markov Chains to assist evolutionary computation
to improve its performance. To the contrary, di�erential evolution was used to
improve Markov chains by building a population of chains [20].

HMM are known to be more accurate and produce smaller models than sim-
ple Markov models. The only study that we are aware o� on using HMM for
evolutionary computation is the work by Rees and Koehler [21]. In their work,
they showed that HMM can accurately predict the parameters for evolutionary
computation. Their work ran many evolutionary computation algorithms with
�xed parameters and used HMM to estimate these parameters in an o�ine mode.
It was able to accurately estimate the parameters using HMMs. This work mo-
tivates this study by asking the question of whether HMM can in fact be used
to estimate the parameters in real-time and use these estimates to adapt the
parameters of DE to improve the performance of the optimization process?

HMMs require three matrix-based parameters of their own: the initial state
probability, the transition probability, and the emission matrices. All three ma-
trices are formed by direct estimations drawn from the DE population; thus, no
parameters for HMMs are needed in our method.

The rest of this paper is organized as follows: Section 2 reviews the literature
on DE and its di�erent adaptive variants; Section 3 discusses the basics of the
HMM; Section 4 presents the framework of the proposed DE-HMM algorithm;
Section 5 provides details of the experimental study conducted; and Section 6
presents summary and conclusions of the study.

2 Background

2.1 The Basic DE Algorithm

DE was designed primarily for continuous optimization problems [22, 23]. In a
minimization problem, the lower �tness value is taken to be a better solution.
For example, minimize the objective/�tness function f : S→ R, where S (RD,
and each data point (x = (x1..........xD) ∈ S) is called a decision vector. S is the
space of feasible solutions, whereby feasibility in unconstrained optimization is
de�ned with boundary (also called boxing) constraints alone. Thus, the feasible

space is S =
∏D

j=1 [Lj , Uj], where Lj and Uj are the lower and upper bounds of
xj , respectively.

For a population of PS individuals, we denote each individual by xi,j,G =
{xi,jxPS,D}, where i is the index for an individual in a population with
i = 1, . . . , PS, j is the index for a decision variable with j = 1, . . . D; and G is
the index for the current generation.

The DE algorithm starts by initializing the population, typically with a uni-
form random distribution within the search space S, as follows:

xi,j,G=0 = Lj + rand() ∗ (Uj − Lj) (1)

4 Keshk, Singh, Abbass

where 0 < rand() < 1 is a uniformly distributed random number.
Each individual in the population is evaluated using the objective function

to be optimized. Then, the algorithm applies three basic operations: mutation,
crossover and selection [1].

1. Mutation: a mutant vector, (vi,G), corresponding to each target vector,
(xi,G), can be generated using di�erent strategies [24]. In this paper, we
use the basic DE/rand/1 strategy due to its exploration capabilities that
can improve the search process;

vi,G = xr1,G + F.(xr2,G − xr3,G) (2)

where r1, r2, and r3 are distinct integer indices randomly chosen within the
range of [1, PS] and are di�erent from i, and F is the ampli�cation factor
which is a positive real number within the range of [0, 1] for scaling the
di�erence vectors.

2. Crossover : the target vector (xi,G) is combined with the mutant vector (vi,G)
to produce the trial vector (i.e., o�spring) using di�erent schemes, with DE
algorithms commonly using either a binomial or an exponential scheme. In
this paper, we adopt the most basic of the two: the binomial scheme as in [1]:

ui,G =

{
vi.G if(rand() ≤ CR) || (j = K)

xi,G otherwise
(3)

where K ∈ {1, 2,D} is a randomly chosen integer for ensuring that
there is at least one dimension in the trial vector that is di�erent from
its corresponding target vector (xi,G), and CR is a user-de�ned crossover
probability ∈ [0, 1].

3. Selection: a greedy selection competition is applied whereby the best of the
target (parent) and trial (o�spring) vectors with the minimum �tness value
survives to the next generation. In DE, a simple cycle involving mutation,
crossover and selection stages is repeated until some termination conditions
are satis�ed.

2.2 Control parameter settings for DE

The DE algorithm has attracted a great deal of attention given its robustness,
high searching accuracy, ease of implementation and use, and fast convergence.
However, the canonical DE is very sensitive to its parameters (i.e., its population
size, mutation and crossover strategies, as well as their corresponding control
parameters) [25]. According to Storn et al. [1], choosing the values of the DE's
associated control parameters F and CR is a non-trivial task although there are
di�erent empirical recommendations for them. For example, Storn et al. [1, 24]
suggested that F ∈ [0.5, 1] and CR ∈ [0.8, 1], Liu et al. [26] advocated F = 0.9
and CR = 0.9 with respect to [1] and, Gamperle et al. [25] proposed F = 0.6 and
CR ∈ [0.3, 0.9]. Ronkkonen et al. [27] stated that the F should set between 0.4

Title Suppressed Due to Excessive Length 5

and 0.95, and the CR should be sampled within [0.9, 1] for separable problems
and within [0.9, 1] for non-separable and multimodal problems.

Setting these control parameters manually is both ine�cient and time con-
suming, therefore many adaptive DE variants that dynamically update them
during the evolutionary search have been proposed [10]. The idea of parameter
adaptation was �rst introduced in the context of a genetic algorithm (GA) [28].
As it is di�cult to classify DE parameter control methods according to a well-
de�ned taxonomy, we will categorize them in the following three classes based
on a `how' criterion:

� deterministic - the control parameters are altered using deterministic rules
regardless of any information obtained as feedback from the system [29];

� adaptive - the control parameters can be updated dynamically and in-
corporate some form of feedback from the search procedure to guide their
adaptation and determine the direction and/or magnitude of any parameter
change [30, 31]; and

� self-adaptive - the parameters are directly encoded into an algorithm to
co-evolve as part of the optimization problem [32].

Usually, adaptive and self-adaptive methods can achieve better results than the
classical DE algorithms because their parameters are automatically and favor-
ably updated with respect to the ongoing evolutionary process [33, 12].

The PS parameter has also received its fair share of attention in the litera-
ture. Most of the time, it is set to a value predetermined by the user according
to the problem's dimensionality. Di�erent suggestions have been made regarding
the setting, which is typically maintained invariant throughout the DE process.
Storn et al. [1], Gamperle [25], and Ronkkonen [27] suggested PS to be �xed be-
tween 5D and 40D, 3D and 8D, and 2D and 40D, respectively. As usual, choos-
ing an appropriate parameter setting is not a straightforward task because of a
parameter's dependencies and the complex interactions during the search [34],
and adaptive/self-adaptive techniques are essential.

2.3 Adaptive selection of multiple mutation strategies and control
parameters

Here, the main idea is to combine di�erent strategies with di�erent parameter
settings into a parameters' candidate pool which could be appropriate for di�er-
ent problems or di�erent stages in a particular problem [30]. In the self-adaptive
DE method proposed by Qing et al. [30], called SaDE, both the trial learning
strategies and control parameters (F and CR) are probabilistically self-adapted
based on the promising solutions from the previous generations. It relies on a
pool of four learning strategies for producing trial vector solutions, with the
F measured by a normal distribution N(0.5, 0.3), and the CR estimated using
an independent normal distribution with a mean (CRm) and a �xed standard
deviation of 0.1 which have to be updated every 25 successive CRs.

To choose the best combination of o�spring strategies and control parameter
settings, Wang et al. [35] proposed a composite DE (CoDE) that reveals di�erent

6 Keshk, Singh, Abbass

options that could improve the search procedure. It randomly imposes three trial
vector generation strategies with three random control parameter (F and CR)
settings to generate new solutions in each generation.

Another adaptive method for developing a parameter candidate pool intro-
duced in [36] is called Two-Stage DE (TSDE). In it, the evolutionary process
is divided into two stages using the number of �tness evaluations, with dif-
ferent mutation strategies and their corresponding control parameter settings
implemented to achieve equilibrium between the exploration and exploitation
requirements in di�erent stages. More recently, Tang et al. [37] de�ned four dis-
tinct mutation strategies with some parameter values (F and CR) assigned to
the population based on the ordering of their individual ranking, computed by
a component depending on their �tness information being either superior or
inferior.

Mallipeddi et al. [38] proposed an ensemble DE of o�spring generation strate-
gies and control parameter settings. It involves one pool of diverse strategies and
another of di�erent values for each parameter, whereby a combination of strategy
and parameter settings is selected based on their successes in previous genera-
tions to produce better o�spring. The empirical results indicated an outstanding
performance compared with those of other peer algorithms.

Elsayed et al. [39] developed a self-adaptive method for parameter control
called UMOEA in which the population is divided into three sub-populations
of the same size, and then a multi-operator algorithm is applied individually to
each sub-population. The success rate for a prede�ned number of generations
is recorded to determine the best multi-operator. This method was tested on
di�erent functions and produced reasonable results with relatively less evaluation
cost than other approaches.

2.4 Strategy for generating o�spring

Another interesting research direction is to improve the DE's strategy for gener-
ating o�spring. Zhang and Sanderson [40] implemented an extension of the mu-
tation strategy DE/current-to-best, called `DE/current-to-pbest', in the JADE
algorithm, formulated as follows:

vi,G = xi,G + F.(xpbest,G − xi,G) + F.(xr1,G − xr2,G), (4)

where xpbest,G is chosen randomly from 100p% of the population vectors through
the current generation, with p ∈ [0, 1], xr1,G and xr2,G adopted randomly from
the combination of the current population and optional archive of previously
generated o�spring. Moreover, the F and CR are independently updated for
each target vector using the Cauchy and normal distributions, respectively.
Qiu et al. [41] developed an adaptive cross-generation DE for multi-objective
optimization. This study suggested two mutation strategies for e�ciently pre-
serving the population's diversity, and a new cross-generation adaptive technique
(CGA) for automatically adjusting the F and CR via information regarding the
objective space and evolutionary process information. Wang et al. [42] used the

Title Suppressed Due to Excessive Length 7

cumulative distribution information of the population, which helps to implement
an Eigen coordinate system for the crossover operator. This operator is executed
in both the original and Eigen coordinate systems with better o�spring surviving
for the next generations.

2.5 Con�guring control parameter settings

Liu and Lampinen [26] proposed a new DE, called the fuzzy adaptive DE (FADE).
Its parameters are adapted while running the evolutionary process using fuzzy
logic controllers, the inputs for which are provided with their relative function
values and successive generations' individuals. These parameters respond to the
population information, i.e., parameter vectors, function values and their changes
during the search process, with its experimental results demonstrating that it
outperforms the conventional DE on high dimensional problems. Yu et al. [43]
designed an individual dependent parameter adaptation in which the parameters
are updated at the two levels, that of population and individual. The former de-
pends on the optimization state (explorative or exploitative) and the latter relies
on the population's characteristics.

Some optimization algorithms rely on probabilistic models, such as Covari-
ance Matrix Adaptation (CMA) [44] which aims to maximize the progress of
reproduction in a search's evolutionary path. Wang et al. [45] introduced a new
mechanism called CoBiDE for dynamically adjusting the control parameters F
and CR based on a covariance matrix learning and binomial distribution param-
eter settings with the purpose of achieving a balance between DE's exploration
and exploitation. The covariance matrix of CoBiDE uses a coordinate system
for the crossover operator, and the binomial distribution with two Cauchy dis-
tributions. On the one hand, F is randomly generated by a Cauchy distribution,
with locations of 0.65 and 1.0 and scales of 0.1 and 0.1 for the �rst and second
halves of the time period. On the other hand, CR is randomly generated by a
Cauchy distribution, with locations of 1.0 and 0.95 and scales of 0.1 and 0.1 for
the �rst and second halves of the time period.

The experimental results showed that CoBiDE performed e�ectively com-
pared with other DE variants and state-of-the-art algorithms. A covariance ma-
trix with the ES method called CMA-ES was developed by Hansen and Oster-
meier [46]. It aims to adapt the covariance matrix of the sampling population
based on previously accepted samples with the purpose of maximizing the like-
lihood of the search process by generating successful mutations (i.e., step sizes
and search directions).

A DE with self-adaptive parameter control based on probabilities called jDE
was designed by Brest et al. [13]. It encodes the control parameters into a pop-
ulation of individuals by initializing F to 0.5 and CR to 0.9 for each individual.
Then, the F and CR are regenerated based on uniform distributions of [0.1, 1]
and [0, 1], respectively. With regard to the probabilities τ1= τ2= 0.1, new F and
CR are calculated in subsequent generations by using the following equations.

8 Keshk, Singh, Abbass

FG+1 =

{
Fl + rand1.Fu ifrand2 ≤ τ1
Fi,G otherwise

CRG+1 =

{
rand3 ifrand4 ≤ τ2
CRi,G otherwise

Here, rand1, rand2, rand3, and rand4 are random numbers which follow a uni-
form distribution of [0, 1], Fl andFu equal 0.1 and 0.9, respectively.

Abbass [47] proposed a self-adaptive Pareto DE algorithm for multi-objective
optimization problems in which the F and CR are regenerated using a Gaussian
distribution. Competitive results were obtained in the study compared with other
contemporary multi-objective optimization algorithms. In the last few years,
solving problems with multiple optimal solutions has become a big challenge;
for instance, Basak et al. [48] proposed a DE technique called MOBIDE, which
uses a bi-objective formulation for multimodal optimization. It showed outstand-
ing performance compared to a number of other single and bi-objective niching
algorithms. An adaptive mechanism implemented in [49] for the F and CR based
on exponential weighting moving average performs better than some of its vari-
ants. Sarker et al. [50] developed a dynamic selection method for de�ning and
choosing the most highly ranked combination of control parameter settings to
be used in the subsequent generations. Recently, Corriveau et al. [51] developed
a genetic adaptive method using a probabilistic model of the Bayesian network
(BN) in which the BN uses a graphical model to represent the relationships
among the GA parameters. Tanabe and Fukunaga [52] proposed an extension
for self-adaptive mechanism (L-SHADE), in which the PS linearly decreases
throughout the search process while the SHADE algorithm automatically adapts
the F and CR based on their success histories. The experimental results showed
that L-SHADE outperforms SHADE and other algorithms.

3 Hidden Markov Model

A Hidden Markov Model (HMM) is a powerful statistical data analysis method
used to model a wide range of sequential data epitomized in a sequence of ob-
servations based on probabilistic measures [53]. Its basic theory was proposed in
the 1960s by Baum and Petrie [54] based on Bayes theorem:

P (A | B) =
P (B | A) ∗ P (A)

P (B)
, (5)

where A and B are events, P (A) is the prior probability, P (B) is the marginal
probability for normalization purposes (i.e., evidence), P (B | A) denotes the
conditional probability of B given that A is true and P (A | B) is the posterior
of event A. An HMM is de�ned in [55] as a double stochastic process which is a
discrete-time �nite-state Markov chain that is not observable (i.e., in a hidden
state). However, a sequence of observations can be formed with another set of
stochastic processes. An HMM can be characterized by the parameters:

Title Suppressed Due to Excessive Length 9

� T : the state transition probability matrix (Hidden states),
� N : the number of hidden states,
� E: the observed probability matrix (Emission matrix),
� M : the number of observations, and
� π: the initial state probabilities (at t=1).

In order to formulate an HMM, we use the notations by Rabiner and Juang [55].
We denote the set of latent states by S = (s1, s2,, sN), where each state
generates one of the observation set V = (v1, v2,, vM). Since a system
can change from one state to another state, by obtaining a set of states Q =
(q1, q2,, qT) and a corresponding sequence of observationsO = (O1, O2,, OT),
such that Ot ∈ V , the transition probabilities from states i to j with a Marko-
vian property representing a N × N transition probability matrix (Tij) which
satis�es:

Tij = P (qt = sj | qt−1 = si) (6)

Given a set of states and observations, we de�ne a N ×M observation (i.e.,
emission matrix E) with the probability of observation (V) being generated from
state i, E = (Ei(vm)), as:

Ei(vm) = P (qt = vm | qt−1 = si) (7)

A typical HMM contains three parameters, represented as M = (T,E, π)
which satisfy:

�
N∑
j=1

Tij = 1 where 1 ≤ i ≤ N

�
M∑
j=1

Eij = 1 where 1 ≤ i ≤ N

�
N∑
i=1

πi = 1 where π ≥ 0

4 Proposed DE-HMM algorithm

As previously discussed, di�erent strategies and control parameter values for
DE (i.e., the F and CR) need to be carefully adjusted for di�erent optimization
problems and, in the literature, are independently adapted; for example, the
JADE algorithm [40] individually generates the F and CR and adapts them
using Cauchy and Gaussian distributions, respectively. Mallipeddi et al. [38]
stated that the performance of DE depends on the combination of F and CR
but, although their interdependency has often been investigated, their actual
dependencies have not been e�ectively demonstrated.

In this study, we propose a novel DE-HMM algorithm which aims to au-
tomatically adjust the CR and F of DE by coupling a HMM with the DE
procedure. The speed of DE is not greatly impacted, particularly because all

10 Keshk, Singh, Abbass

the statistics required for the HMM are simply computed from the �rst-order
mathematical measures, such as probability, mean, and standard deviation, at a
linear computational cost.

A HMM can be precisely modeled by de�ning its states (T) and obser-
vations (E) from particular data streams. In multivariate time-series models
(MTSM) [56], x0, x1, ..., xt, where t is time, the values of these variables are ob-
served over time. However, although we cannot obtain any information about
the observed sequences of these values over time, namely the hidden states, they
can be estimated using HMM, as schematically shown in Figure 1.

These states could be discrete or continuous depending on their data norms [57].
In order to identify the internal changes in the DE population over time, as a
type of MTSM, we employ a HMM with two prede�ned discrete states measured
from the change in DE's �tness probabilities.

We adapt the F and CR of the DE-HMM algorithm by computing the pos-
terior and likelihood ratios of the HMM, respectively. A DE population changes
naturally over time which is similar to the internal procedure of HMM (i.e., time
series models [56]). We consider each change to be in one of two states: either
negative when the �tness function does not increase and is denoted by `low';
or positive when it increases and is denoted by `high'. These states can be es-
timated using the HMM procedure and measured by computing their posterior
probabilities considering values from 0 to 0.5 as `low' and from 0.5 to 1 as `high'
which represent the HMM transition matrix. The advantage for using categories
is to avoid over-�tting an HMM to a particular population since our objective
is not reverse engineer the parameters as what Rees and Koehler [21] did, but
to estimate the values that should be adopted. The HMM emission matrix is es-
timated by calculating the probability that a population is drawn from the DE
stochastic process. A complete example demonstrating the working of DE-HMM
is presented at the end of the supplementary materials.

In Figure 1, the HMM is represented as a directed weighted graph called a
transition diagram in which the nodes correspond to the states of DE evolu-
tion changes and the edges of all possible transitions between the states. For
each state, there is an emission probability matrix that explicitly indicates its
observations as the HMM deals with both observed and hidden events.

The proposed DE-HMM estimates F and CR parameters, with each indi-
vidual (xi,G) in the population having its own Fi,G and CRi,G which are used
to produce the trial vectors shown in Figure 2. It executes a self-adaptation
for these parameters by considering the inter-correlation between them as the
chosen parameter values should generate the individuals most likely to survive.
This interaction is modelled by �rst estimating CR then using the estimated CR
in conjunction with the minimum posterior probability for the given population
observation emission matrix (EMseq).

The full procedure for computing the DE control parameters (F and CR) is
depicted in Figure 3. The relationship between DE and HMM is shown and the
estimation of both F and CR depend on di�erent HMM probabilities and the
posterior and Likelihood ratio for F and CR, respectively. The DE population

Title Suppressed Due to Excessive Length 11

High Low

0.3

0.4

0.60.7

P(1)=0.4

P(2)=0.1

P(3)=0.5

P(1)=0.2

P(2)=0.2

P(3)=0.6

Fig. 1. Example of HMM transition diagram for DE. the low and high states rep-
resent the low and high change rates of DE, respectively, and the observation set
(O = {1, 2, 3}) re�ects the three dimensions of a population over time t.

X1,G F1,G , CR1,G.

.

.

.

.
XPS,G FPS,G , CRPS,G

Same

learning

strategies

.

.

.

.

.

Fig. 2. Encoding of control parameters with individuals

is transformed into probabilities where the initial population is taken as prior
probability; the parent vectors, denoting the population observations are taken
as likelihood probability; and the mutant vectors, re�ecting the change from the
parent vectors are taken as the case of the posterior probability. HMM uses these
probabilities to estimate CR and F .

The parent and mutant vectors of DE are transformed into probabilities using
Algorithm 1, where it loads a population of size R rows and C columns and
calculates the probability distribution for individuals in the population, popm.

The DE population values are used as input for computing the parameters
of the HMM (π, T , E) and the HMM model is built concurrently as DE is run-
ning. Firstly, the initial states (π) are set at {0.5, 0.5} for {low, high} to begin
building the model with equal probabilities. Secondly, the states of the HMM
denote the population change rates over time (i.e., high or low) of the potential
evaluation process which can be measured internally through changes in the ob-
servation probabilities [58, 59]. To compute CR, the likelihood ratio is calculated
between the actual sequence of states STseq and the most likely state sequence
bestseq estimated by the Viterbi algorithm [60] (discussed shortly). The emission
matrix (E) is measured from the population sample values to re�ect the interde-

12 Keshk, Singh, Abbass

Input : Population popm as a matrix of size R× C
Create a new matrix popr of size R× C;
Create two vectors µ and σ of length C;
for each column j in popm do

µ(j)← mean(popm) over all rows for column j;
σ(j)← stdev(popm) over all rows for column j;

end

for each row i in popm do

for each column j in popm do
popr(i, j)← prob(popm(i, j) ≤ ζ), ζ ∈ N(µ(j), σ(j))

end

end

Output: popr
Algorithm 1: Transformation of population values to probabilities.

 …

 …

 …

Parent

vector

Mutant

vector

Offspring

 …

 …

prior

likelihood

posterior

 …

M

π

T

CR= Likelihood

ratio

()

F= Average

(min_posterior,

CR)

DE Probabilities & Bayes Theory HMM DE parameters

Fig. 3. Complete procedure for computing DE control parameters.

Title Suppressed Due to Excessive Length 13

pendencies in the evolutionary process and re�ects the likelihood probabilities.
Similarly, the observation sequence EMseq is estimated using the Viterbi algo-
rithm to calculate the posteriors, then F is estimated by taking the average of
the minimum posteriors and CR. The steps for estimating these parameters are
provided in Algorithm 2 and details regarding building the HMM from DE are
discussed in the following subsections.

Input : Population popm as a matrix of size R× C
Convert popm to probability emission matrix B using Algorithm 1
Initialize A with low, high states
Sample random sequence of states STseq and emission symbols EMseq

Apply Viterbi algorithm to �nd the best state sequence bestseq that maximizes
the likelihood of EMseq

CR← Likelihoodratio (STseq ≥ bestseq)
F ← Average (minposterior|EMseq, CR)
Output: F , CR
Algorithm 2: Steps for building the HMM from DE information.

4.1 Computing crossover rate (CR)

Setting the Crossover Rate CR is usually more sensitive to problem charac-
teristics such as modality (unimodal/multimodal) [12]. CR decides the mixing
probability of the current target vector and the donor vector resultant from the
mutation operator to construct a trial vector (o�spring).

In this study, we apply the binomial crossover operator as shown in Equa-
tion 3. The Viterbi algorithm [60] is employed to estimate CR by selecting
the best state sequence that maximizes the probability of CR given an ob-
servation sequence. The algorithm uses dynamic programming and acts as a
decoder in which the HMM parameters (T,E) and a sequence of observations
O = (O1, O2,, OT) are given. It estimates the most probable state se-
quence from the maximum of all previous sequences maxq0,q1....qt−1

. Therefore,
for a current state (qj) at time (t), the Viterbi probability vt(j) is calculated as:

vt(j) =
N
max
t=1

vt−1(i) ∗ Tij ∗ Ej(Ot), (8)

where, vt−1(i) denotes the preceding probability of the Viterbi path, Tij is the
probability of transition from states qi to qj , and Ej(Ot) is the emitted obser-
vation probability given the current state j. CR is estimated by calculating the
likelihood ratio of the actual sequence of states (STseq) generated being better
than the best state sequence (bestseq) using the Viterbi algorithm, as:

CR = Likelihoodratio (STseq ≥ bestseq) (9)

14 Keshk, Singh, Abbass

We rely on the likelihood ratio (i.e., of being in a state STseq ≥ bestseq) as
a way of comparing a parent vector to its mutant vector for generating new o�-
spring. This ratio becomes the likelihood of STseq (i.e., the actual state sequence)
given bestseq (i.e., the most likely state sequence), as shown in Figure 3.

De�ne �tness function f ; population size PS; population dimensions D; the
maximum number of function evaluation MaxEval;
Set G = 0; Feval = PS; F = CR = 0.5;
pop0 ← rand() using Eq 1;
Evaluate pop0 with f ;
while (Feval ≤MaxEval) do

for each xi,G ∈ pop do
vi,G ← Mutation (Eq 2);
ui,G ← Crossover (Eq 3);
Evaluate ui,G;
Select(ui,G,xi,G) (Eq 5);

end

Sort(popG,ascending on �tness);
Update F ,CR for the sorted, successful vectors using HMM in Algorithm 2;

end

Algorithm 3: An iteration of the DE-HMM algorithm.

4.2 Computing mutation factor (F)

The mutation factor F is automatically adapted using the HMM posteriors. It
is an important factor for balancing exploration and exploitation and acts as a
perturbation ratio for an o�spring attempting to reach the desired region of the
search space [61]. A dynamic F is computed from the minimum HMM posterior
of a particular state, given the emission sequence, to indicate a change of state,
either low or high, in the population sequence. The posterior distribution is used
to generate a Bayesian inference towards the next search region to be explored
which can be calculated as the conditional probability of ending up in such state
given the observed population sequence, as shown in Figure 3.

In DE, one of the functionalities of a new mutant vector is to help exploring
di�erent regions in the search space [61]. The movement probability between
these vectors (parent and mutant) can be estimated as the lowest probability
that occurs in the mutant vector to explore the most possible sub-regions given
all previous information in the original vectors, both the emission observations
(EMseq), and the changes in their CR values, as:

F = Average (minposterior|EMseq, CR) (10)

Title Suppressed Due to Excessive Length 15

Fig. 4. General �owchart of the proposed DE-HMM algorithm.

16 Keshk, Singh, Abbass

4.3 Architecture of DE-HMM

The architecture of DE-HMM is presented in Algorithm 3, which demonstrates
our way of implementing the HMM procedures in the DE evolution process for
adjusting the intrinsic F and CR parameters, as introduced above. The main
di�erence between the classical DE and DE-HMM is the phase for constructing
the HMM from the DE's sorted population, as shown in Figure 4.

Firstly, a population of PS individuals is randomly initialized using Equa-
tion 1, with initially uses F = 0.5 and CR = 0.5. Subsequently, all the individuals
are evaluated according to f(x). Secondly, the mutation operation is employed
for each generation via Equation 2 to generate the mutant individuals, followed
by the crossover operation as we apply the basic binomial crossover scheme in
Equation 3 to produce the trial individuals (o�spring).

The procedure for updating the values of F and CR depends on how the DE
population changes over time from generation to another. In DE-HMM, the DE
population is sorted in an ascending order and gets transformed into probabilities
as shown in Algorithm 1 in order to �t the HMM parameters. We then sample
random sequences of STseq states and EMseq from the HMM.

The CR value is estimated by calculating the likelihood ratio between the
actual state sequence STseq that is better than the best state sequence bestseq,
generated using the Viterbi algorithm, as in Equation 9. This is derived from
DE where CR in crossover operation determines the improvement ratio of the
new o�spring from the original and mutant vectors. Also, the F value is esti-
mated based on averaging the minimum posterior (i.e., re�ects the change of
DE state) and the estimated CR to recognize the dependency between F and
CR, as in Equation 10. Finally, each original individual is compared with its
corresponding o�spring and the individual with less �tness value survives to the
next generation.

5 Experimental Study

5.1 Benchmark functions and experimental setup

We use two benchmark test suites from IEEE CEC2005 [62] and IEEE CEC2014 [63]
special sessions on real-parameter optimization to evaluate our proposed algo-
rithm's performance. A total of 55 test functions with 10, 30, and 50 dimensions
(D), which are summarized in the supplementary attachment (Tables A1 and
A2). The 25 test functions from CEC2005 are denoted as C1 ~ C25 and those
from CEC2014 are denoted as F1 ~ F30. The explanation of these benchmark
problems can be found in [62] and [63]. We compare DE-HMM against the clas-
sical DE (i.e., �xed values of the F and CR), di�erent variations of DE-HMM,
and twelve competing algorithms of which eight are competitive DE-variants and
four are non-DE EAs, described in Section 4.3.

DE-HMM was implemented in Matlab R2015a, and executed on a PC with a
3.40 GHz TM-Core i7 processor, 16 GB RAM running Windows 7 64 bits. The
PS for DE-HMM is set to 60. The maximum number of function evaluations

Title Suppressed Due to Excessive Length 17

Table 1. F and CR values used for DE-HMM variants.

Variant F posterior CR likelihood ratio
DE-HMM-minG min current > best
DE-HMM-minL min current < best
DE-HMM-minE min current = best
DE-HMM-meanG mean current > best
DE-HMM-meanL mean current < best
DE-HMM-meanE mean current = best
DE-HMM-maxG max current > best
DE-HMM-maxL max current < best
DE-HMM-maxE max current = best

(FEs) are set to 10000×D, and thirty independent runs are conducted for each
problem. To measure deviations between the estimated and the optimal results,
we use the mean and standard deviation (mean ± std) of the �tness error values
(f(x) − f(x∗)), with those smaller than 1.0E-08 replaced by zero. Because of
space limitation, the detailed results are provided in the online supplementary
�le. In the comparison tables, we highlight the best results in boldface type and
the number of best results (No-Best) obtained by the corresponding algorithm
for all test problems are reported at the end of the comparison tables.

We applied two non-parametric statistical hypothesis tests, namely, the Fried-
man and Wilcoxon tests [64, 65], executed using the SPSS statistical tool [66].
The former compares the algorithms' mean ranks while the latter, assess the
signi�cance of performance of DE-HMM and the other algorithms. Particularly,
the null hypothesis for the tests assumed that there is no signi�cant di�erence
between the mean error values of two samples while the alternative hypothesis
tries to determine if there is a signi�cant di�erence between these samples, using
a 5% signi�cance level. The Wilcoxon statistical results are marked with �+� or
�-� or �=� (in the supplementary statistical tables �signi�cance� column) to show
the signi�cant di�erence in the average �tness values between DE-HMM and
the peer algorithms, where �+� or �-� mean that DE-HMM is signi�cantly better
or worse than the competing algorithm, respectively while �=� means that no
signi�cant di�erence between the two algorithms.

5.2 Analysis of performances of DE-HMM and its own variants

In this experiment, we analyze the roles of di�erent components in DE-HMM
using: (i) the likelihood ratio for setting CR and (ii) the HMM posterior for
setting the F . We use the 30D CEC2005 benchmark problems with eight di�erent
parameter choices. The best choice of DE-HMM is denoted in this section by
DE-HMM-minG to di�erentiate it from other variants and to indicate it uses
minimum posterior and maximum �tness. We compare DE-HMM-minG against
a DE that randomly sets the parameters in each generation (i.e., Rand-gen).
The comparison involves all variants and Rand-gen to allow for an appropriate
test of signi�cance to be used [67].

18 Keshk, Singh, Abbass

Fig. 5. Comparison of numbers of problems with better or worse or equivalent perfor-
mances achieved by DE-HMM and its own variants.

The eight DE-HMM variants are shown in Table 1 in which the second col-
umn refers to the posterior trend of the next region (i.e., minimum, maximum,
or mean step size) and the third column indicates the number of individuals
that can be improved (> or < or no improvement). We also compare DE-HMM
against a DE with random control parameters that we call (Rand-gen). A sum-
mary of the performances of all the DE-HMM variants and Rand-gen DE for the
30D CEC2005 test problems based on the Wilcoxon's and Friedman tests are
shown in Figure 5, and Table 2, respectively. The complete results (i.e., mean
function error) and Wilcoxon results are presented in the supplementary doc-
ument in Tables G1 and G2, respectively. In Figure 5, the proposed algorithm
obtains better average �tness values (i.e., fewer errors) than the other algorithms
as �Better� means that DE-HMM outperforms each of the compared variants
while �Worse� indicates that the competitor variant has better results relative
to DE-HMM. Also, Table 2 shows that the proposed DE-HMM can achieve the
highest ranking.

When evaluating the range of values that F and CR take in di�erent problems
(Figures I1 and I2 in the supplementary �le), we discover that these ranges are
di�erent for di�erent problems. For C2 in Figure I1, the values of F with the
minimum posterior is in the range of [0.3, 0.5], while the mean, and maximum
posterior are within [0.6, 0.75] and [0.85, 1], respectively. Similarly, the CR for
higher proportions of improvement has values within [0.7, 1] and those for a
lower ratio or no further improvement are within [0.6, 0.9] or [0.5, 1]. DE-HMM
adopts slightly di�erent ranges for C12.

In summary, the DE-HMM variant we adopt in this paper (DE-HMM-minG)
has better results than other variants and than random control of parameters.

Title Suppressed Due to Excessive Length 19

Table 2. Statistical analysis of di�erent variants of DE-HMM.

Method
30D
Ranks

DE-HMM-minG �DE-HMM� 2.42

Rand-gen 3.2
DE-HMM-minL 3.62
DE-HMM-minE 4.18
DE-HMM-meanG 4.52
DE-HMM-meanL 5.16
DE-HMM-maxG 7.4
DE-HMM-meanE 7.94
DE-HMM-maxL 8.28
DE-HMM-maxE 8.28

Fig. 6. Comparison of numbers of problems with better or worse or equivalent perfor-
mances achieved by DE-HMM and C-DE.

20 Keshk, Singh, Abbass

5.3 Performance analysis of DE-HMM

Table 3. Rankings obtained from Friedman's test of 10, 30, and 50 dimensional
CEC2005 functions of DE-HMM, C-DE and its DE variants.

Method
Ranks

10D 30D 50D
DE-HMM 2.56 2.72 2.80

CoBiDE 2.60 2.74 2.90
JADE 3.32 3.12 3.16
jDE 3.52 4.04 3.52
SaDE 4.10 3.88 4.56
C-DE 4.90 4.50 4.06

We compare DE-HMM-minG against the classical DE, we use the DE/rand,
called C-DE with its parameters set to PS = 100 , F = 0.5 and CR = 0.9. A
summary of the results obtained from the Wilcoxon statistical test of the two
algorithms is shown in Figure 6 in which it is clear that DE-HMM-minG achieves
better performances for the majority of the problems. Details of these results are
provided in Tables B1 and B2 in the supplementary �le.

We extend the comparison to vary the crossover operator and mutation
strategy in DE-HMM. Four distict setups are shown in .

The four DE-HMM variants shown in Table 4 compare four variants of
DE-HMM. The �rst column shows thebinomial crossover against exponential
crossover shown in Equations 11 and 12, respectively. In Equation 11, xbest,G
is the best �tness vector chosen at generation G and F is the scaling factor,
generated by DE-HMM method. l and�l�D in Equation 12 are the starting
position, and the modulo function with modulus D, respectively. The second
column shows the mutation strategies `rand' and `best'. The third column refers
to the crossover scheme binomial and exponential, used for generating o�spring
solutions.

Table 4. Description of the four mutation and crossover setups used in DE-HMM
analysis.

Mutation strategy Crossover scheme

DE-HMM "rand/bin" rand binomial
DE-HMM �rand/exp� rand exponential
DE-HMM �best/bin� best binomial
DE-HMM �best/exp� best exponential

vi,G = xbest,G + F ∗ (xr1,G − xr1,G) (11)

Title Suppressed Due to Excessive Length 21

ui,G =

{
vi.G ∀j = �l�D,�l + 1�D, ...,�l + L− 1�D

xi,G otherwise
(12)

We use the CEC2005 and CEC2014 benchmark functions at 30 dimensions
to evaluate their performances in terms of the obtained solution quality, where
the detailed results are reported in Table I1 and I2 in the supplementary �le,
respectively. The Wilcoxon statistical results for the four setup are shown in
Tables 5 and 6 for both CEC2005 and CEC2014 test set, respectively. In Ta-
ble 5, DE-HMM employing best strategy with binomial crossover achieves better
results in three unimodal and one multimodal functions while using best and ex-
ponential operators get optimal results of two unimodal functions. Nevertheless,
DE-HMM using rand strategy and binomial crossover is better for the majority
of time. Moreover, for CEC2014 results in Table 6, DE-HMM with rand and
binomial crossover operators is superior to the other variants.

Table 5. Comparison summary between DE-HMM with rand and binomial operators
versus other setups at 30D CEC2005 test functions.

DE-HMM "rand/bin" vs.

30D

"Better" "Worse" "Equal" "p-value" "Signi�cance"
DE-HMM/rand/exp 18 2 5 0.005 +
DE-HMM/best/bin 12 3 10 0.11 =
DE-HMM/best/exp 14 3 8 0.0125 +

Table 6. Comparison summary between DE-HMM with rand and binomial operators
versus other setups at 30D CEC2014 test functions.

DE-HMM "rand/bin" vs.

30D

"Better" "Worse" "Equal" "p-value" "Signi�cance"
DE-HMM/rand/exp 21 5 4 0.001 +
DE-HMM/best/bin 15 9 6 0.155 =
DE-HMM/best/exp 16 10 4 0.146 =

Comparison with the state-of-the-art variants Ve£ek et.al [68] stated that
comparisons in the literature should be made either against parameter settings
that has been tuned using a parameter tuning algorithm, or against algorithms
with abilities for parameter control. Given that our proposed method falls in the
second category, we have compared against similar algorithms.

DE-HMM is compared against some state of the art parameter control algo-
rithms. DE-HMM is compared with four DE variants (i.e., SaDE [30], JADE [40],
jDE [13] and CoBiDE [45]) and four non-DE EAs (i.e. BNGA [51]), CLPSO [69],
CMA-ES [46], and IPOP-CMA-ES [70]), methods which are frequently used for
comparison in the literature. IPOP-CMA-ES was the winner of the CEC2005
competition.

22 Keshk, Singh, Abbass

Fig. 7. Comparison of numbers of problems with better or worse or equivalent perfor-
mance achieved by DE-HMM and all the state-of-art variants.

DE-HMM, JADE, and CoBiDE perform better than SaDE and jDE and, in
particular, DE-HMM o�ers signi�cant improvements over the other methods for
many test instances. DE-HMM shows promising results with di�erent problem
sizes, as shown in Table 3 which ranks the compared algorithms according to
the Friedman test. For the 10D problems, DE-HMM is able to �nd the optimal
solutions of all unimodal functions except for C3. The majority of multimodal
and hybrid test functions can be solved e�ciently by DE-HMM.

Similarly, for the 30D problems, DE-HMM exhibits superior results for most
functions, especially the ones that have multimodality and complex hybrid com-
position. However, JADE can solve the unimodal functions better than all other
algorithms and obtain the optimal results for C9, like jDE and CoBiDE. For the
50D problems, DE-HMM is still superior compared to the other algorithms, with
similar rank to CoBiDE. Overall, the DE-HMM provides better or competitive
performance to the other algorithms. The complete results of these experiments
are provided in the supplementary document (Table C (I, II, and III)).

DE-HMM also compares well with the non-DE based algorithms, as detailed
in the supplementary document (Table D (I and II)) and achieves better results
for most test functions studied. CMA-ES obtains the best results on the �rst
three instances, C5 and C7 with 10D. Comparing the general trends of these
algorithms for the multimodal functions, IPOP-CMA-ES achieves good results
for 30D problems. In the complex composition group of functions, the DE-HMM
clearly shows better performance compared to the other algorithms.

The statistical results obtained from the Friedman test show the superiority
of DE-HMM over the non-DE algorithms for both the 10D and 30D problems, as

Title Suppressed Due to Excessive Length 23

Table 7. Rankings obtained from Friedman's test of 10, 30 dimensional CEC2005
functions of DE-HMM and its non-DE variants.

Method
Ranks

10D 30D
DE-HMM 2.12 1.96

IPOP-CMA-ES 2.18 2.16
CLPSO 3.00 2.90
BNGA 3.82 -
CMAES 3.88 2.98

presented in Table 7 in which DE-HMM has the highest ranking. Moreover, the
statistical results obtained from the Wilcoxon test demonstrates that DE-HMM
clearly obtains greater number of better results than the other algorithms, as
depicted in Figure 7. More speci�cally, Table F1 in the supplementary �le shows
test of signi�cance results and demonstrate that DE-HMM is signi�cantly better
than all competing algorithms (except JADE and CoBiDE), based on the average
results obtained for all test problems for 10D and 30D problems. For JADE and
CoBiDE, DE-HMM o�ers signi�cantly better solutions for 10D test problems
and equivalent performance for 30D and 50D.

To further demonstrate the performance of DE-HMM, convergence behavior
of various algorithms is presented in Figure 8, where the x-axis indicates evolu-
tions of generations (within the same function evaluations) and the y-axis is the
median function error values.

Evaluation of DE-HMM against recent DE variants In this subsec-
tion, four most recent DE-variants (i.e., CPI-DE [42], TSDE [36], LSHADE [52],
and UMOEA [39]) are compared with DE-HMM. The motivation for choosing
these four algorithms for comparison is that all were either published on the
proceedings of CEC2014 and/or were recently proposed DE variants that re�ect
the latest progress of DE. This experiment is conducted over 30 instances with
10, 30, and 50 decision variables for 30 independent runs to provide a more
comprehensive comparison. All the computational results for the 10D, 30D, and
50D problems are documented in the supplementary �le in Table E (I, II, III),
respectively.

It is evident from Table E (I) that, for the 10D problems, performance is
uniform across all algorithms for unimodal functions. DE-HMM reaches the op-
timal solution for two multimodal functions (F6 and F8) similar to LSHADE
and UMOEA. DE-HMM is the best for six functions while LSHADE obtains
the best for four functions and UMOEA is better than the others for three. Ta-
ble E (II) summarizes the experimental comparison of 30D problems for which
both UMOEA and LSHADE, and both TSDE and CPI-DE achieve the optimal
solutions for three, and one unimodal functions, respectively, while DE-HMM's
results are close to the optimal solution for F3. DE-HMM is able to obtain the

24 Keshk, Singh, Abbass

Fig. 8. Convergence plots of DE-HMM on F1, F2, F11, F14, and F16 with 30 dimen-
sions where y-axis in log scale.

Fig. 9. Comparison of numbers of problems with better or worse or equivalent perfor-
mance achieved by DE-HMM and the up-to-date DE variants.

Title Suppressed Due to Excessive Length 25

Table 8. Rankings obtained from Friedman's test of 10, 30 dimensional CEC2014
functions of DE-HMM and its up-to-date variants.

Method
Ranks

10D 30D 50D
DE-HMM 2.67 2.78 2.67

LSHADE 2.82 2.90 2.72
TSDE 2.83 3.68 4.22
UMOEA 3.43 3.08 2.78
C-DE 4.55 4.10 4.38
CPI-DE 4.70 4.45 4.23

optimal solution for the multimodal F7 and better results for three functions as
well as competitive results for the other hybrid and composition functions. The
results for 50D problems maintains the trend, where DE-HMM performs best
over most multimodal, hybrid, and composition functions.

Finally, the results obtained from the Wilcoxon and Friedman tests are shown
in Figure 9 and Table 8, respectively, for all dimensions in our experiment.
To conclude this comprehensive comparison, it is worth mentioning that the
proposed DE-HMM yields signi�cantly better results than CPI-DE for 10D and
50D, while it is signi�cantly better than TSDE, LSHADE, and UMOEA for 30D,
50D, and 10D, respectively as detailed in Table F2 in the supplementary �le.

5.4 Time Complexity

This section describes the time complexity for comparing DE-HMM against
other algorithms (either compared based on CEC2005 or CEC2014 benchmark
datasets). The computational time is measured as de�ned in [62, 63] for CEC2005
and CEC2014, respectively. The comparisons are reported in Tables H2 and H3
for CEC2005 and CEC2014 benchmark datasets, accordingly. We employ the
two standard functions used in the literature for this comparison.

Two plots are drawn to depict the performance of each algorithm in terms
of the quality of the obtained solution and the time consumed for achieving it.
Firstly, Figure 10 shows the trade o� between the e�ectiveness and e�ciency of
DE-HMM and C-DE and DE variants, use the CEC2005 test set in the previous
comparison. Function 3 is employed as de�ned in [62] at di�erent dimensions
(10, 30, and 50 dimensions). From this �gure, it is clear that DE-HMM could
consume more time than C-DE, JADE, and jDE but it achieves less error (better
result) than them at 30D and 50D. In regard to the 10D results, although C-DE,
jDE, and JADE are better in terms of time and quality for 10D, the di�erence
when compared to the performance of DE-HMM is negligible.

Secondly, we test the time consumed for F18 in CEC2014 dataset as de�ned
in [63] to evaluate the performance of the proposed DE-HMM algorithm and
up-to-date DE variants. The comparisons are described in Figure 11, where DE-
HMM performs better in terms of quality of solutions obtained, albeit with

26 Keshk, Singh, Abbass

Fig. 10. Time complexity for C3 of CEC 2005 test problems at 10, 30, and 50 dimen-
sions.

a slight increase in computational cost when compared to classical DE and
LSHADE algorithms.

6 Conclusion

Dynamically controlling the parameters for Di�erential Evolution (DE) removes
the burden from the user and reduces the time-consuming e�ort to �nd suitable
parameter values manually. In this paper, we proposed Hidden Markov Models
(HMMs) to automatically con�gure the two DE parameters, F and CR, with-
out the need for any external information. We called the algorithm, DE-HMM.
In our approach, the HMM posterior and likelihood ratios were estimated to
assign the F and CR values during the evolutionary process. Two benchmark
problem sets containing 55 test functions (i.e., IEEE CEC2005 and CEC2014)
with 10, 30 and 50 dimensions were used to conduct comprehensive experiments
to analyze the performance of DE-HMM. It was compared with classical DE,
di�erent combinations of mutation strategies and crossover operators, di�erent
variants of DE-HMM, and DE-based and non-DE state-of-the-art algorithms.
The experimental results showed that DE-HMM achieve a competitive overall.
In future work, this proposed self-adaptive method will be used to solve real-
world optimization problems and be extended to handle constrained optimization
problems.

References

1. Storn, R., Price, K.: Di�erential evolution-a simple and e�cient adaptive scheme
for global optimization over continuous spaces. Volume 3. ICSI Berkeley (1995)

Title Suppressed Due to Excessive Length 27

Fig. 11. Time complexity for F18 of CEC 2014 test problems at 10, 30, and 50 dimen-
sions.

2. Abraham, A., Das, S., Konar, A.: Document clustering using di�erential evolu-
tion. In: 2006 IEEE International Conference on Evolutionary Computation, IEEE
(2006) 1784�1791

3. Halder, U., Das, S., Maity, D.: A cluster-based di�erential evolution algorithm with
external archive for optimization in dynamic environments. IEEE transactions on
cybernetics 43(3) (2013) 881�897

4. Al-Dabbagh, R.D., Kinsheel, A., Mekhilef, S., Baba, M.S., Shamshirband, S.: Sys-
tem identi�cation and control of robot manipulator based on fuzzy adaptive dif-
ferential evolution algorithm. Advances in Engineering Software 78 (2014) 60�66

5. Hsu, C.H., Juang, C.F.: Evolutionary robot wall-following control using type-2
fuzzy controller with species-de-activated continuous aco. IEEE Transactions on
Fuzzy Systems 21(1) (Feb 2013) 100�112

6. Kamal, A., MOHD, M., Elshaikh, M., Badlishah, R.: Di�erential evolution (de)
algorithm to optimize berkeley-mac protocol for wireless sensor network (wsn).
Journal of Theoretical & Applied Information Technology 89(2) (2016)

7. Regulwar, D., Choudhari, S., Raj, A.: Di�erential evolution algorithm with appli-
cation to optimal operation of multipurpose reservoir. Journal of Water Resource
and Protection (2010)

8. Onwubolu, G., Davendra, D.: Scheduling �ow shops using di�erential evolution
algorithm. European Journal of Operational Research 171(2) (2006) 674�692

9. Kheawhom, S.: E�cient constraint handling scheme for di�erential evolutionary
algorithm in solving chemical engineering optimization problem. Journal of Indus-
trial and Engineering Chemistry 16(4) (2010) 620�628

10. Das, S., Mullick, S.S., Suganthan, P.: Recent advances in di�erential evolution�an
updated survey. Swarm and Evolutionary Computation 27 (2016) 1�30

11. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
transactions on evolutionary computation 1(1) (1997) 67�82

12. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary
algorithms: Trends and challenges. IEEE Trans. Evolutionary Computation 19(2)
(2015) 167�187

28 Keshk, Singh, Abbass

13. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in di�erential evolution: a comparative study on numerical benchmark
problems. IEEE transactions on evolutionary computation 10(6) (2006) 646�657

14. Goldberg, D.E., Segrest, P.: Finite markov chain analysis of genetic algorithms. In:
Proceedings of the second international conference on genetic algorithms. Volume 1.
(1987) 1

15. Mahfoud, S.W.: Finite markov chain models of an alternative selection strategy
for the genetic algorithm. Complex systems 7(2) (1993) 155

16. Davis, T.E., Principe, J.C.: A markov chain framework for the simple genetic
algorithm. Evolutionary computation 1(3) (1993) 269�288

17. Rudolph, G.: Finite markov chain results in evolutionary computation: A tour
d'horizon. Fundamenta informaticae 35(1-4) (1998) 67�89

18. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Arti�cial Intelligence 127(1) (2001) 57�85

19. He, J., Yao, X.: Average drift analysis and population scalability. IEEE Transac-
tions on Evolutionary Computation 21(3) (2017) 426�439

20. Braak, C.J.T.: A markov chain monte carlo version of the genetic algorithm dif-
ferential evolution: easy bayesian computing for real parameter spaces. Statistics
and Computing 16(3) (2006) 239�249

21. Rees, J., Koehler, G.J.: Learning genetic algorithm parameters using hidden
markov models. European Journal of Operational Research 175(2) (2006) 806�820

22. Hu, Z.b., Su, Q.h., Xiong, S.w., Hu, F.g.: Self-adaptive hybrid di�erential evolution
with simulated annealing algorithm for numerical optimization. In: 2008 IEEE
Congress on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), IEEE (2008) 1189�1194

23. Wang, Y., Cai, Z., Zhang, Q.: Di�erential evolution with composite trial vector
generation strategies and control parameters. IEEE Transactions on Evolutionary
Computation 15(1) (2011) 55�66

24. Storn, R.: On the usage of di�erential evolution for function optimization. In:
Fuzzy Information Processing Society, 1996. NAFIPS., 1996 Biennial Conference
of the North American, IEEE (1996) 519�523

25. Gämperle, R., Müller, S.D., Koumoutsakos, P.: A parameter study for di�erential
evolution. Advances in intelligent systems, fuzzy systems, evolutionary computa-
tion 10 (2002) 293�298

26. Liu, J., Lampinen, J.: A fuzzy adaptive di�erential evolution algorithm. Soft
Computing 9(6) (2005) 448�462

27. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with dif-
ferential evolution. In: Proc. IEEE CEC. Volume 1. (2005) 506�513

28. Davis, L.: Adapting operator probabilities in genetic algorithms. In: proc. 3rd
International conference on genetic algorithms. (1989) 61�69

29. Diao, R., Shen, Q.: Deterministic parameter control in harmony search. In: 2010
UK Workshop on Computational Intelligence (UKCI). (Sept 2010) 1�7

30. Qin, A.K., Huang, V.L., Suganthan, P.N.: Di�erential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE transactions on Evo-
lutionary Computation 13(2) (2009) 398�417

31. Zaman, M.F., Elsayed, S.M., Ray, T., Sarker, R.A.: Evolutionary algorithms for
dynamic economic dispatch problems. IEEE Transactions on Power Systems 31(2)
(2016) 1486�1495

32. Fan, Q., Yan, X.: Self-adaptive di�erential evolution algorithm with zoning evolu-
tion of control parameters and adaptive mutation strategies. IEEE Transactions
on Cybernetics 46(1) (2016) 219�232

Title Suppressed Due to Excessive Length 29

33. Das, S., Mandal, A., Mukherjee, R.: An adaptive di�erential evolution algorithm
for global optimization in dynamic environments. IEEE transactions on cybernetics
44(6) (2014) 966�978

34. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive di�erential
evolution algorithm with novel mutation and crossover strategies for global numer-
ical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 42(2) (2012) 482�500

35. Wang, Y., Cai, Z., Zhang, Q.: Di�erential evolution with composite trial vector
generation strategies and control parameters. IEEE Transactions on Evolutionary
Computation 15(1) (2011) 55�66

36. Liu, Z.Z., Wang, Y., Yang, S., Cai, Z.: Di�erential evolution with a two-stage
optimization mechanism for numerical optimization. In: 2016 IEEE Congress on
Evolutionary Computation (CEC), IEEE (2016)

37. Tang, L., Dong, Y., Liu, J.: Di�erential evolution with an individual-dependent
mechanism. IEEE Transactions on Evolutionary Computation 19(4) (2015) 560�
574

38. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Di�erential evolu-
tion algorithm with ensemble of parameters and mutation strategies. Applied Soft
Computing 11(2) (2011) 1679�1696

39. Elsayed, S.M., Sarker, R.A., Essam, D.L., Hamza, N.M.: Testing united multi-
operator evolutionary algorithms on the cec2014 real-parameter numerical opti-
mization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE
(2014) 1650�1657

40. Zhang, J., Sanderson, A.C.: Jade: adaptive di�erential evolution with optional
external archive. IEEE transactions on evolutionary computation 13(5) (2009)
945�958

41. Qiu, X., Xu, J.X., Tan, K.C., Abbass, H.A.: Adaptive cross-generation di�eren-
tial evolution operators for multiobjective optimization. IEEE Transactions on
Evolutionary Computation 20(2) (2016) 232�244

42. Wang, Y., Liu, Z.Z., Li, J., Li, H.X., Yen, G.G.: Utilizing cumulative popula-
tion distribution information in di�erential evolution. Applied Soft Computing 48
(2016) 329�346

43. Yu, W.J., Shen, M., Chen, W.N., Zhan, Z.H., Gong, Y.J., Lin, Y., Liu, O., Zhang,
J.: Di�erential evolution with two-level parameter adaptation. IEEE T. Cybernet-
ics 44(7) (2014) 1080�1099

44. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es).
Evolutionary computation 11(1) (2003) 1�18

45. Wang, Y., Li, H.X., Huang, T., Li, L.: Di�erential evolution based on covariance
matrix learning and bimodal distribution parameter setting. Applied Soft Com-
puting 18 (2014) 232�247

46. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation 9(2) (2001) 159�195

47. Abbass, H.A.: The self-adaptive pareto di�erential evolution algorithm. In: Evo-
lutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on. Vol-
ume 1., IEEE (2002) 831�836

48. Basak, A., Das, S., Tan, K.C.: Multimodal optimization using a biobjective dif-
ferential evolution algorithm enhanced with mean distance-based selection. IEEE
Transactions on Evolutionary Computation 17(5) (2013) 666�685

30 Keshk, Singh, Abbass

49. Aalto, J., Lampinen, J.: A mutation and crossover adaptation mechanism for di�er-
ential evolution algorithm. In: 2014 IEEE Congress on Evolutionary Computation
(CEC), IEEE (2014) 451�458

50. Sarker, R.A., Elsayed, S.M., Ray, T.: Di�erential evolution with dynamic pa-
rameters selection for optimization problems. IEEE Transactions on Evolutionary
Computation 18(5) (2014) 689�707

51. Corriveau, G., Guilbault, R., Tahan, A., Sabourin, R.: Bayesian network as an
adaptive parameter setting approach for genetic algorithms. Complex & Intelligent
Systems (2016) 1�22

52. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using
linear population size reduction. In: 2014 IEEE Congress on Evolutionary Com-
putation (CEC), IEEE (2014) 1658�1665

53. Mohamed, M.A., Gader, P.: Generalized hidden markov models. i. theoretical
frameworks. IEEE Transactions on fuzzy systems 8(1) (2000) 67�81

54. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of �nite state
markov chains. The annals of mathematical statistics 37(6) (1966) 1554�1563

55. Rabiner, L., Juang, B.: An introduction to hidden markov models. ieee assp
magazine 3(1) (1986) 4�16

56. Harl, F., Chatelain, F., Gouy-Pailler, C., Achard, S.: Bayesian model for multiple
change-points detection in multivariate time series. IEEE Transactions on Signal
Processing 64(16) (2016) 4351�4362

57. Ku, M.L., Chen, Y., Liu, K.J.R.: Data-driven stochastic models and policies for
energy harvesting sensor communications. IEEE Journal on Selected Areas in
Communications 33(8) (Aug 2015) 1505�1520

58. Morimoto, H.: Hidden markov models and self-organizing maps applied to stroke
incidence. Open Journal of Applied Sciences 6(03) (2016) 158

59. Cao, Y., Li, Y., Coleman, S., Belatreche, A., McGinnity, T.M.: Adaptive hid-
den markov model with anomaly states for price manipulation detection. IEEE
Transactions on Neural Networks and Learning Systems 26(2) (Feb 2015) 318�330

60. Lou, H.L.: Implementing the viterbi algorithm. IEEE Signal processing magazine
12(5) (1995) 42�52

61. �repin²ek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: A survey. ACM Computing Surveys (CSUR) 45(3) (2013) 35

62. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem de�nitions and evaluation criteria for the cec 2005 special session on
real-parameter optimization. Technical report (2005)

63. Liang, J., Qu, B., Suganthan, P.: Problem de�nitions and evaluation criteria for
the cec 2014 special session and competition on single objective real-parameter
numerical optimization. Computational Intelligence Laboratory, Zhengzhou Uni-
versity, Zhengzhou China and Technical Report, Nanyang Technological University,
Singapore (2013)

64. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms behaviour a case study
on the cec2005 special session on real parameter optimization. Journal of Heuristics
15(6) (2009) 617�644

65. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1) (2011)
3�18

66. : The spss statistical tool. (2016)

Title Suppressed Due to Excessive Length 31

67. Ve£ek, N., �repin²ek, M., Mernik, M.: On the in�uence of the number of algo-
rithms, problems, and independent runs in the comparison of evolutionary algo-
rithms. Applied Soft Computing (2017)

68. Ve£ek, N., Mernik, M., �repin²ek, M.: A chess rating system for evolutionary algo-
rithms: a new method for the comparison and ranking of evolutionary algorithms.
Information Sciences 277 (2014) 656�679

69. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning parti-
cle swarm optimizer for global optimization of multimodal functions. IEEE trans-
actions on evolutionary computation 10(3) (2006) 281�295

70. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population
size. In: 2005 IEEE congress on evolutionary computation. Volume 2., IEEE (2005)
1769�1776

