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Abstract

Games are becoming increasingly indispensable, not only for fun but also to support tasks that

are more serious, such as education, strategic planning, and understanding of complex phenomena.

Computational intelligence-based methods are contributing significantly to this development. Learning

Classifier Systems (LCS) is a pioneering computational intelligence approach that combines machine

learning methods with evolutionary computation, to learn problem solutions in the form of interpretable

rules. These systems offer several advantages for game applications, including a powerful and flexible

agent architecture built on a knowledge-based symbolic modeling engine; modeling flexibility that allows

integrating domain knowledge and different machine learning mechanisms under a single computational

framework; an ability to adapt to diverse game requirements; and an ability to learn and generate creative

agent behaviors in real-time dynamic environments. We present a comprehensive and dedicated survey

of LCS in computer games. The survey highlights the versatility and advantages of these systems by

reviewing their application in a variety of games. The survey is organized according to a general game

classification and provides an opportunity to bring this important research direction into the public eye.

We discuss the strengths and weaknesses of the existing approaches and provide insights into important

future research directions.

I. INTRODUCTION

The use of computer games is widespread in human life. Computer games play diverse roles

in shaping human life and knowledge, from being used for fun and entertainment [1] to being

applied to strategic planning and decision support [2], [3], health [4], defense [5], education and
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learning [6], and analysis of complex phenomena [7]. In terms of revenue, the computer games

industry is now one of the most lucrative businesses in the world with annual revenues in tens of

billions of dollars [8]. This huge financial incentive is further fueling research and development

in this domain.

Computational Intelligence (CI) based [9] approaches provide a powerful set of methods

and tools for modeling artificial game-playing agents and making games more dynamic and

interesting [10], [11]. The use of CI techniques in games has grown steadily over the years

because of advancements in related research areas, such as evolutionary computation [12] and

deep neural networks [13]. A useful review of CI techniques in games can be found in [14],

[15].

Learning Classifier Systems (LCS) [16] are one of the earliest CI approaches. LCS bring

important opportunities to games. First, LCS are rule-based, enabling easier integration with

the classic knowledge bases that are used in games. Second, they are equipped with learning

mechanisms that enable them to adapt the rules “on the fly.” Third, recent advances in LCS

introduce architectures and algorithms that make them a technique that is fast and suitable for

real-time environments.

LCS were introduced as biologically inspired computational models for human-like cognition.

Typical LCS implementations consist of a knowledge base or memory component that is encoded

using some form of a symbolic representation, and a learning component that uses a combination

of evolutionary and machine learning algorithms to adapt the knowledge base in given environ-

mental conditions. Since their inception several decades ago, LCS have been applied to diverse

problems in numerous application domains, including computer games. Several LCS surveys

have been written over the years, with the more recent ones [17]–[20] focusing mainly on either

algorithmic variations and advances in LCS or their applications. In addition, a small number

of non-dedicated reviews (e.g., [21], [22]) have indirectly covered LCS and their applications

under broader topics.

II. MOTIVATION AND SURVEY STRATEGY

The lack of a comprehensive survey covering LCS-based approaches in games is an infor-

mation gap that this paper attempts to address. By synthesizing the existing LCS literature in

computer games published over the last two decades, we offer insights into future research

opportunities for both the computer games industry and LCS communities.
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The search for relevant publications in this review was conducted through well-known databases

such as Scopus, Google Scholar, IEEE Xplore and ACM Digital Library, using a combination

of keywords. Some keywords included “game(s),” variants of “classifier systems,” and specific

system names such as XCS and UCS. This gave rise to several hundred matching results. The two

filters applied in the search excluded (a) papers that focused on the use of other AI/CI approaches

in computer games and merely listed LCS as a reference approach; and (b) LCS papers that did

not have a focus on games but cited LCS work on games as a reference. In addition, this search

excluded the general class of LCS-oriented agent-based modeling approaches. Examples of such

work include LCS applications to classical benchmark multi-step problems (e.g., maze, woods,

etc.) [23], in which LCS-based agents engage in typical reinforcement learning (RL) tasks, as

well as agent applications in practical domains (e.g., economics [24], marketing [25], air traffic

control [26], robotics [27], aircraft simulation [28], and multi-agent simulations [29]). While this

line of research is important, such applications are not classified as “games” in the context of

this paper. Additionally, these approaches have been covered in other reviews cited above, and

are well known in the LCS literature. In contrast, LCS research in computer games is relatively

unexplored, and LCS are relatively unknown in the community, and therefore relatively unused.

The rest of the paper is organized as follows: Section III introduces LCS and the important

variants. Section IV provides a discussion of games and their different types, specifically those

related to the reviewed approaches in this paper. Section V provides a comprehensive survey

of LCS applications in different games. This survey is organized according to four categories:

video games, combinatorial games, simulation games, and game theory. Section VI provides a

summary of the review and highlights important points. Section VII lists the future research

directions and insights based on this review and the authors’ knowledge about emerging areas

of research. The paper ends with a brief conclusion in Section VIII.

III. LEARNING CLASSIFIER SYSTEMS

John Holland introduced the concept of classifier systems as a way to design adaptive learning

capabilities in artificial systems [30]–[32]. Holland was inspired by learning in natural cognitive

systems. He attributed learning in these systems with the ability to build a representation

or model of their environment, generalize from experience through exploiting environmental

regularities, and continuously expand and improve their internal models and knowledge. With

such philosophical underpinnings, he combined his ground-breaking work in genetic algorithms



4

Fig. 1. Basic components of a learning classifier system. The production component interfaces with the environment, receives

and processes input to the system and generates output using the current set of rules (knowledge-base or model) evolved by

the system; the performance component deals with measuring the consistency of the evolved model based on the quality of

the proposed actions in a task and the corresponding reward received from the environment; and the discovery component is

tasked with generalization of the model (finding an accurate but minimal representation) through the application of evolutionary

algorithms.

(GAs) [30] with a rule-based knowledge representation and RL mechanisms to set the foundations

of LCS. Some useful introductory resources on LCS are available (e.g., [16], [33]). A brief

introduction is provided in this section of this paper, specifically focusing on those components

and the learning paradigms that are pertinent to games.

LCS are seen as a class of rule-based systems [34]. In Holland’s words [32]: “Classifier

systems are a kind of rule-based system with general mechanisms for processing rules in parallel,

for adaptive generation of new rules, and for testing the effectiveness of existing rules.” This

definition highlights three basic functions that form the basis of most LCS implementations.

Figure 1 depicts an abstract representation of these basic components and their interaction in a

typical LCS implementation.

LCS share several features with RL systems. First, as with many RL systems, LCS were

also originally applied to sequential learning problems, in which an agent interacts with its

environment and learns through trial and error and through receiving feedback from the environ-

ment. Second, the rule evaluation in LCS borrows heavily from the RL literature. For instance,

Holland used bucket-brigade – an epochal RL algorithm – to measure the goodness of classifiers

in the early implementations of classifier systems [35]. Later incarnations of LCS leveraged the
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contemporary developments in RL research and borrowed techniques that were more advanced,

such as temporal-difference learning [36] and Q-learning [37], to evaluate rule quality. The

goal of RL algorithms, in general, is to find an optimal policy and its valuation to guide an

agent’s behavior in an environment, based on the feedback or a reward signal received from the

environment. Often, neural networks are used to approximate value functions when an exhaustive

policy search is not practical, as in the case of high-dimensional or continuous problems. From

that perspective, LCS provide an alternative RL mechanism that represents both the policy in an

interpretable rule format as well as a rule-based approximation to value functions. Finally, the

LCS framework allows for learning the policy in an online fashion, making it especially suitable

for real-time applications and many computer games. See [38], [39] for a detailed comparison

of the two approaches.

Traditionally, LCS models have been classified into two broad categories: the systems that

were developed following Holland’s work, known as Michigan-style LCS; and the approach

popularized by De Jong and Smith [40], [41] known as Pittsburgh-style LCS. A major difference

between the two approaches emerged based on their solution representation. In Michigan-style

LCS, a classifier consists of a single condition-action-rule and a set of parameters that keep track

of the rule’s quality and other statistics. Subsequently, a classifier in these systems contributes

partially to the entire solution or the knowledge base. A complete solution is represented by the

set of all classifiers or the entire rule population. Michigan-style LCS are incremental learners;

that is, they build their models online during interaction with the environment. Subsequently, the

rule discovery algorithm, generally a GA, works in a non-generational fashion and often in the

niches defined by the matching rule conditions to an environmental state or input.

A major distinction between different types of Michigan-style LCS is made based on how

the fitness of classifiers is calculated in the system. The strength-based LCS relate a classifier’s

fitness directly to the accumulated payoff or reward it receives from the environment for its

advocated action. In contrast, the accuracy-based LCS compute a classifier’s fitness based on

the accuracy of reward prediction, thereby allowing the system to evolve a complete action map of

the problem. This subtle difference in fitness calculation has shown to have a significant effect on

system performance and the evolutionary dynamics [42]. Holland’s original implementation [35],

known as CS-1, was based on this latter approach. However, in his revised implementation [43],

which became known as the payoff-based LCS, he replaced the accuracy-based fitness with

the strength-based fitness among other changes. Several LCS variants were later introduced,
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building on Holland’s work (see [20] for a recent historical review). However, after the initial

appreciation of Holland’s work, LCS largely remained disregarded until Stewart Wilson’s work

in 1990s revived the field.

Wilson, leveraging the advancements in the RL literature, introduced two different variants

of LCS: the infamous ZCS [23] and the XCS [44]. XCS, in particular, incorporated a purely

accuracy-based fitness computation and a Q-learning-based fitness update mechanism, among

other features. These changes helped overcome some key performance bottlenecks in the payoff-

based LCS, such as the proliferation of over-general classifiers in the population. XCS rejuvenated

the field of LCS research and became the most popular and successful LCS. This current survey

corroborated this observation and identified XCS as the most widely adopted LCS in the games

literature, followed by Holland’s LCS, ZCS, and a small number of uses of Pittsburgh-style LCS.

Below, we provide a brief explanation of XCS, focusing on its main algorithmic components

and its working, using a simple game example.

Figure 2 depicts a working cycle of an XCS. In a Tic-tac-toe game, for instance, an input

to the system might consist of the current board configuration. A ternary vector of length nine

could be used to model this environment. Here, the vector length corresponds to the number

of boxes or positions on the board, which could be either empty or containing one of the two

relevant symbols (i.e., a naught or a cross). A ternary set (e.g., 0, 1, 2) could be used to map

the three possible values for each position on the board. Subsequently, a quaternary vector of

length nine could be used to represent the condition part in a classifier, where the extra literal

allows generalization using a don’t-care symbol (e.g., #). The action part of the classifier could

be represented using a single integer, specifying the next move ([1− 9]). That is, for placing a

naught or a cross (depending upon which symbol is allocated to either competitor) on one of the

available board slots, the population of classifiers ([P ]) could be initialized randomly to a fixed

size or incrementally, using the covering operator. Upon receiving an input, a matchset ([M ]) is

formed by all classifiers in the population that match the current input. A matching function can

be defined based on an exact match or using some distance criterion [45]. The covering operator

is activated if no matching classifiers are found in the existing population.

The covering creates one or more classifiers matching the current input, with a given prob-

ability of introducing don’t-cares in the condition. Next, an action to be executed is selected

from all advocated actions by the classifiers in [M ]. A commonly used scheme is to alternate

between a random action selection, encouraging exploration, and action selection based on the
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Fig. 2. Working of XCS in reinforcement learning tasks. The gray-shaded boxes represent different classifier sets used in the

system and the blue-shaded ellipsoids represent different processes that take place in the system.

prediction strength of the matching classifiers, to exploit current knowledge. Finally, the fitness

of all rules in the [M ] is updated based on the reward (e.g., 1000 for a win, −1000 for losing

a game, and 0 otherwise) received from the environment for the selected action. A GA cycle

is applied on the classifier population in either [M ] or [A] based on the average experience of

classifiers in either set.

In Pittsburgh-style LCS, a complete rule set constitutes a classifier. Hence, the system works

on a population of variable-length rule sets using a generational GA, in which each rule set is

considered a potential solution to the problem. The rule evaluation is performed in a batch-mode

over the entire data set (or a sufficiently large number of examples), and the genetic operators are

applied at the rule set level at the completion of a rule evaluation cycle. In other words, the GA in
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these systems works more traditionally as an optimization heuristic to evolve the best solution in

the form of a complete rule set. Since in this set-up the solutions require longer evaluation trials

to measure their quality, these systems are more suitable for offline tasks and often are applied

to concept learning problems using a supervised approach. Incremental variants of these systems

which are potentially better candidates for use in computer games, have appeared recently [46].

However, this area is largely unexplored.

IV. TYPES OF GAMES

Broadly, the LCS approaches included in this survey can be categorized as those related

strictly to computer games and to game theory. Computer games such as video and board

games are modeled and played in-silico. Game-theoretic studies are generally not categorized as

computer games because of their mostly non-recreational applications. However, the relationship

between game theory and computer games [47], [48] have been acknowledged in the literature.

Moreover, as the use of computer games expands beyond recreation (e.g., in education [49] and

management [2], [3] sectors), game-theoretic models could play an even greater role in game

design. For these reasons, we included LCS-based game-theoretic studies in this review. Overall,

this review has been organized into four types or categories of games, which are discussed below.

A. Video Games

A variety of video game genres exist [50]. This section provides an overview of the famous

genres, with a focus on the types relevant to the LCS work in games. Among these, action games

are one of the earliest and well-known types of video games, with a human player generally

controlling and maneuvering a character in a given environment. Some of the famous action

game sub-genres include arcade games, shooter games and platform games. In fact, many of the

video game genres can be considered the extensions on or variations of action games.

Role-playing games (RPGs) are another popular type of video game. These games are generally

characterized by a strong storyline and a set of formal game playing rules. One or more

players take on a role or a character in a given story and perform actions that match the

story line. Conversely, the story might unfold according to the players’ actions. Players are

usually characterized by personality traits that define their capabilities and action preferences. The

massively multi-player online role-playing games (MMORPGs) are played among a large number

of players on social media or on the internet. Non-player-characters (NPCs) are introduced in



9

these games to make the finctional settings more realistic. The CI-based techniques, including

LCS, can be applied to model and control both the player and non-player characters in these

games. Fallout [51], with its different versions, is an example of a famous RPG.

Real-time strategy (RTS) games are also a popular class of video games. In RTS games,

players’ actions are usually related to resource planning in a continuously changing environment.

In these games, one or more players control a set of semi-autonomous entities to perform a

real-time task, such as winning a military battle or a race. Star Craft, War Craft and Supreme

Commander are examples of famous RTS games. The modeling of artificial agents for playing

RTS games is quite challenging because of the diversity of multi-tasking that is inherent in these

games.

B. Combinatorial Games

Combinatorial games (aka board games) usually involve two players who compete in sequential

moves with perfect information about each game state. Chess and Go are famous examples of

such games, which have been the subject of rigorous research in AI for a long time. AI approaches

usually focus on modeling agents or algorithms that can compete with human experts in these

games. A brute-force strategy used is to explore the space of all state-action possibilities and

choose the best course of action to achieve a goal, such as be the first to complete a task. While

for some simpler games (e.g., Nim and Tic-tac-toe), such a strategy works well, for more complex

games (e.g., Chess and Go) an exhaustive search is impractical. Approximate techniques or other

AI/CI techniques are commonly employed in these situations to model intelligent agents that

could perform at the level of their human competitors.

C. Simulation Games

Simulation games attempt to model some aspects of real-world situations, such as stock market

trading or traffic control. These games have numerous uses in areas such as education, training,

policy, and system analysis and design. While modeling and simulation is an established field

for dealing with issues in these fields, games provide an engaging environment for the users to

achieve similar objectives. For example, simulation games are used to train surgeons for complex

surgeries [52]. Artificial agents can play various roles in these games. For instance, they may be

used to co-learn their strategies from the human players [53] or to evolve challenging scenarios

for the trainees [54].



10

D. Game Theory

Game theory is a well-established mathematical approach to study the competition between

rational decision-making agents with wide-ranging applications in economics and, political,

biological and computer sciences. CI-based approaches extend the game-theoretic models in

simulated environments through developing agent models that aim to mimic purely rational and

human-like behaviors [55]. In a typical two-player game (e.g., the Prisoner’s Dilemma (PD)

game), two strategic players make discrete choices independently (e.g., cooperate or defect).

These games can be extended easily to become multi-player or iterative games, in which players

consider the outcomes of their previous moves in deciding their actions at each iteration. Iterated

Prisoner’s Dilemma (IPD) is a well-known example of this type of game model.

Evolutionary game theory (EGT) [56] is a more recent branch of game theory that extends

game-theoretic models to study the population-based evolutionary dynamics. The GA-based

approaches have been well studied in EGT, as a result of Axelrod’s seminal work [57]. Standard

GA-based agents are conventionally used in the EGT models to study the evolution of strategies

under varying game conditions. LCS-based strategic agents provide distinct advantages over

traditional GA-based agent encoding, such as their ability to generalize across the strategy space

and their ability to encode larger memory sizes. It is rather surprising that, despite this potential,

only a handful of researchers have explored the use of LCS (reviewed in the next section) for

modeling the game-theoretic agents.

V. LCS IN GAMES

This section presents a comprehensive survey of LCS applications under the four categories

discussed in the previous section: video games, combinatorial games, simulation games, and

game theory. The papers in each category (and sub categories) are reviewed in a chronological

order. As discussed in a later section, the first major piece of work reported in the literature on the

explicit use of LCS for games was Seredyski et al. [58]. Several game-like environments, such

as the infamous “maze” or “woods” problems [23], were introduced as evaluation benchmarks

in the early LCS research. Smith also tested his Pittsburgh-style LCS (LS-1) in a poker-betting

domain [59]. However, this survey does not cover those studies, which focused on testing LCS

capabilities in typical multi-step RL tasks.
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A. Video Games

A small number of researchers have focused on modeling NPCs using LCS. Robert et al. [60]–

[62] introduced MHiCS, a Modular and Hierarchical Classifier System, for modeling NPCs in

MMORPGs. MHiCS is a multi-layer architecture in which each layer consists of multiple LCS.

The first-level LCS aim at learning multiple high-level behaviors (e.g., attack, track and eat),

based on different motivation values that are computed as a function of current environmental

conditions and the given NPC personalities’ traits. The second-level LCS are applied to produce

a specific action based on the given motivation values and fitness of the first-level LCS. The last

two levels of LCS are used to produce final actions, by diffusing outputs from the activated LCS

in the previous levels, and to manipulate effectors or resources related to these actions. The overall

architecture for MHiCS is quite involved and this precludes conducting an in-depth analysis of its

utility [60]. The authors contend that LCS are better methods for modeling NPCs, as they fulfill

four key agent design requirements: a) reactivity through event-action rules; b) proactivity through

encoding flexibility; c) autonomy through evolutionary learning; and d) reconfigurability because

of their interpretable knowledge base. Sanchez et al. [63] used an XCS within a behavioral

animation framework, called Virtual Behaviors (ViBes), which was used to model and simulate

NPCs. ViBes consists of four main components, including a decision-making module that is

responsible for selecting given behaviors (e.g., eat, sleep or walk), based on a perceived input.

An XCS was used in this module to learn rules adaptively for selecting different behaviors.

The resulting system was tested in a game called V-Man, to model the agent behavior in a

virtual kitchen environment. The authors observed that LCS-based agent models are able to

provide reactive behaviors at the same time as planning a long sequence of actions needed for

the virtual characters to operate in situated environments. Recently, Kop et al. [64] proposed the

Evolutionary Dynamic Scripting (EDS) method to model NPCs in serious games. EDS borrows

ideas from LCS, using a rule-based framework that is similar to that used in LCS but differs in

two algorithmic components. First, instead of using a GA, EDS uses a tree representation for

rules and genetic programming to evolve the rules. Second, EDS replaces the Q-learning-based

RL component with a technique called Dynamic Scripting (DS). Unlike other RL methods that

aim at learning the state-action mapping or a policy during interaction with the environment,

DS works on the pre-defined rules (or a policy) and only adjusts the rule weights based on their

applicability to different states and corresponding performance. An air combat simulation was
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used to evaluate EDS and showed that EDS can produce slightly improved NPC behavior and

can discover useful novel rules. The authors note that the evolutionary rule-based RL systems

have an edge over traditional techniques because of their ability to produce continuous novel

behavior in such scenarios and to allow the integration of external domain knowledge.

Several studies have explored the use of LCS for designing soft-soccer playing agents. Among

these, Bonarini and Trianni’s [65] work was the first application of fuzzy-LCS to simulated

soccer games, specifically to RoboCup. The fuzzy-LCS are similar in effect to XCS, but differ

by using fuzzy logic to encode rules. The experimental results showed a significantly better

passing performance when communication between agents was enabled. These results provided

evidence for a successful co-evolution of cooperation using LCS-based agents. Castillo et al. [66]

used an XCS to model the players in RoboCup. The XCS-based players were built on top of

an existing static rule-based agent architecture (11Monkeys [67]). Experiments with different

settings were conducted. However, the best results were obtained when the agents used a mixed

strategy in which the XCS population was always initialized with scripted rules taken from

11Monkeys. These rules were kept unchanged during the evolution, but additional rules were

learned to complement this fixed strategy. Sato, along with different co-authors, later published

a series of papers on an event-driven hybrid LCS approach for modeling online soccer playing

agents [68]–[72]. The main idea behind this system is to employ LCS as a meta-learner or

a hyper-heuristic algorithm that learn rules to select appropriate action-selection algorithms or

strategies in an online soccer game. That is, different soccer-playing algorithms and strategies

may perform differently in different game scenarios; the goal of meta-learning LCS is to map the

most effective algorithms to the corresponding game scenarios. RoboCup, being a real-time and

dynamic learning environment and requiring coordination between a team of agents, introduces

interesting challenges for the agents’ design. The above-mentioned studies have demonstrated

the modeling power and flexibility that LCS provide in dealing with such an environment.

Bonarini’s work showed the integration of a fuzzy knowledge base with RL using the LCS

framework. Castillo’s work showed how LCS agents could be seeded with pre-scripted rules and

evolved thereafter. Sato’s work showed how LCS could be used as an agent as well as a meta-

agent. These studies also demonstrated the ability of LCS to allow incorporating communication

between agents and to evolve their knowledge cooperatively.

Among applications of LCS to other action and RTS games, Falke and Ross [73] used ZCS to

model an adaptive agent in a war game in which models engaged in a battle between two armies.
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ZCS was used to learn an adaptive strategy to control an army squad against human-controlled

army squads. To avoid slow convergence, the system was provided with an immediate reward

signal and was made to evolve classifiers at an abstract level. Learning in this more generalized

or simpler search space helped ZCS to evolve increasingly complex controllers when competing

against humans. This work showed that lightweight LCS models encoded with simpler conditions

and abstracted actions could be more effective for RTS games than complex LCS models. Such

models also provided better transparency and portability than previous attempts in that literature.

Lujan et al. [74], [75] applied the standard XCS to model agents in Wargus. The system was

tested with both immediate and delayed reward functions and it was found that the immediate

reward function worked much better than the delayed version. The system was tested with a

random player on four types of scenarios relating to different skills, such as training archers.

The results showed that XCS performed well in terms of reward prediction and learning sensible

rules. Lujan’s work further emphasized the importance of appropriate design of reward functions

for improving LCS performance in RTS games. Small and Congdon [76] applied a Pittsburgh-

style LCS approach to model agents in an RTS game called Unreal Tournament 2004. The

real-time nature of the learning environment did not allow the system to train on any winning

scenario, and hence receive any positive reinforcement, leading to learning difficulties. To bypass

this problem, the initial population was seeded by injecting several high-level handcrafted rules.

Significant improvement in learning performance was reported with this strategy. This work has

been perhaps the only study that tested Pittsburgh-style LCS in a real-time game environment.

Computational time challenges were expected, owing to the batch-processing nature of this type

of LCS. It would be interesting to compare XCS performance on the same game with the

LCS used in this study. Nidorf et al. [77] used XCS to model agents for RoboCode, in which

one or more (military) tanks engaged in a mutual battle. Agents needed to learn three kinds

of strategies: scanning for enemies; targeting and firing at them; and maneuvering to create a

strategic advantage. Apparently, a standard XCS implementation was used to encode all strategies

singularly; that is, in the same population. The performance of XCS was compared with a neuro-

evolutionary method (NEAT), and a better XCS performance was observed in some scenarios

without a clear overall winner. The authors noted that a continuous, skewed payoff, multi-step

environment proved challenging for XCS, especially with increasing difficulty in test scenarios.

This has been perhaps the only study that compared the performance of LCS with another CI

method in the same game environment. The authors noted that both algorithms were good at
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learning competent strategies. Further, while XCS struggled with an increased number of actions,

NEAT was found to be prone to overfitting. In our view, the former problem is much easier to

handle and is more related to the environment representational issues than the overfitting problem,

which is a more serious problem that may require algorithmic changes to address it. Tsapanos et

al. [78] used ZCS to model agents in a military-flavored RTS game called ORTS [79], in which

agents engaged in different tasks to build, defend, and attack military bases. The performance of

ZCS was compared with a randomly acting agent as well as with an agent that used a standard

RL algorithm (SARSA). The experimental results showed a better ZCS performance over other

methods. This was one of the few studies that compared an LCS with a standard RL algorithm in

a game environment and showed promising results. Clementis [80] applied XCS to a simplified

“battleship” game. The authors tested two variations of the action selection mechanism. The first

method used a probabilistic action selection mechanism, in which the action probabilities were

determined from the statistics computed during the game play (e.g., by computing the number

of hits over all hits for a specific action). The second method fed the action statistics to a neural

network and used its output to predict actions indirectly. The results showed a significantly faster

and better performance when using neural network-supported actions selection, highlighting the

merits of hybridizing LCS-based game agents with other machine learning techniques.

Other game applications include Irvan et al.’s work [81], which studied LCS-based agents in

the game of Pac-Man. A multi-agent LCS architecture was proposed, in which multiple XCS-

based agents successfully coordinated with each other using a shared memory concept in the

Pac-Man game.

The above studies have shown the application of LCS in different roles in several categories

of video games, including the modeling of NPCs; modeling of agents that compete with human

players and other intelligent or scripted agents; modeling of multi-agent teams; and in learning

adaptive game-playing strategies in real-time environments. Despite the diversity of the above-

mentioned successful LCS applications, the utility of LCS in modern and more complicated

games is not evident from the current literature. Given the LCS potential, as demonstrated by

these studies, this seems to be a missed research opportunity.

B. Combinatorial Games

A small number of studies exist in this category. Browne et al. [82], [83] explored the

performance of XCS in the Connect4 game. Connect4 is a turn-based board game that has a
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goal of placing the four counters of the same color or shape consecutively in any direction. The

goal for an agent is to learn a winning strategy. An abstraction algorithm was introduced by the

authors to overcome the scalability issues posed by the large, multi-step search space imposed

by this game. The algorithm aimed at combining high fitness rules learned by an XCS and

constructing rules with higher generalization. While this algorithm improved XCS performance

(particularly, the number of wins), it also slowed the system. This work provided a solution to the

scaling problem without losing the model transparency. The abstraction technique also aligned

well with Holland’s original vision of default hierarchies in LCS [84]. Other mechanisms that

could can provide faster abstraction solutions in LCS have been proposed in the literature [85].

Sood et al. [86] attempted to test the ability of LCS to learn strategies in a complex supply-

chain environment in the aviation industry. As their test bed for this purpose, they used three

game environments, including Nim, IPD and matrix choice games [87]. An XCS was used to

model agents playing these games and competing with other scripted agents. The experiments

showed that XCS was able to learn better strategies than the other agents could. The authors

listed model interpretability, effective generalization, and the flexibility to allow application be

both the Markovian and non-Markovian environments as key reasons to choose LCS over other

RL methods for this industrial problem.

Knittel and Bossomaier [88], [89] introduced LCS called the Activation Reinforcement Clas-

sifier System (ARCS) and evaluated its capabilities in the game of Dots and Boxes. ARCS was

based on the concept of reusable features and a modular design to improve LCS scalability

in combinatorial games. The main idea was to learn small fragments or features from the

environment as rule constructs and then use networks of these features to define matching

rules for given states of the game. The performance of ARCS and XCS was compared with

increasing board sizes in the game. Both systems showed similar learning trends as the game

size was varied. However, ARCS performed slightly better than XCS in catching-up speed when

the problem size was changed. Once again, this work exemplified the flexibility of LCS to be

abstracted to other evolutionary RL algorithms for meeting specific problem requirements.

LCS applications in combinatorial games are surprisingly limited, despite the fact that such

games can replace the traditional synthetic problems used in basic LCS research in RL problems

easily. In addition to being good benchmark problems, such games can become a source of

innovation and improvement in LCS research, as evidenced by the works above.
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C. Simulation Games

Simulation games are not common, owing to their generally serious applications. It is encour-

aging to see a small number of LCS applications being used in this category of games. Kobayashi

and Terano [90] explored the use of XCS in designing a simulator for business education, as well

as an artificial agent that engaged with the simulator along with the human users. The simulation

results suggested that XCS was able to learn better business decisions, which could lead to better

profits, than the other types of agents (including humans). The authors also conducted a sensitivity

analysis of XCS parameters and suggested that a higher GA frequency (lower θGA) and a smaller

exploration probability provided better and more robust outcomes. The authors highlighted the

interpretability of the learnt model as a key advantage in this set-up, which allowed an easier

integration with human users and other hand-coded agents. The rules learned by XCS were also

deemed useful for developing new game scenarios.

Fernando [91] showed the ability of LCS to learn lexical and syntactic conventions for

effective communication between two agents in a “language game”. A language game models

communication between at least two agents, with the agents trying to develop a language

convention in order to understand each other, to achieve a common goal. The specific language

game in this work used arbitrary concepts and sounds to represent language conventions. These

were encoded as alphabetic strings and integers, respectively. Two implementations of XCS were

employed in a co-evolutionary framework, one acting as a transmitter (speaker) and the other

as a receiver (listener). Each XCS, in turn, consisted of two separate classifier populations, one

covering the syntactic rules and the other covering the lexical rules. The results showed that the

XCS-based agents were able to learn correctly the syntactic and lexical rules that represented

the communicated concepts. This work demonstrated the application of LCS in implementing

symbolic communication between agents. The authors found the incremental addition of new

populations of classifiers an especially useful feature, as it allowed modification of syntactical

conventions without interfering with lexical conventions. They also noted that the generalization

pressure in XCS helped in learning systematic syntactic conventions [91].

Li and Liu [92] used LCS to model two types of agents (i.e., institutional investors and

regulators) in a game that modeled regulatory dynamics in an artificial stock market. The two

types of agents adapted their strategies during the simulation; that is, while the agents representing

small and medium-sized enterprises engaged in making investment decisions. Unfortunately,
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the authors did not describe the details of the LCS models used in the simulation, but listed

adaptability as the key strength that encouraged them to adopt LCS for this problem.

As with the combinatorial games, the LCS applications under this category were limited and

warrant further investigation. LCS can be used both as an agent interacting with other agents in

the simulated environment and as a simulation miner with a goal to continuously improve the

simulation and make it more interesting for its users.

D. Game Theory

Several studies have explored the use of LCS in game-theoretic setting. One of the first studies

in this respect was presented in [93]. Instead of modeling game-playing agents, the authors used

the concept of evolutionary stable strategy to provide theoretical foundations for convergence in

LCS. Their empirical results, using a Hawke and Dove game, showed that the bucket-brigade

algorithm leads to an evolutionary stable population, as long as the population is kept static; that

is, the GA operation is suspended.

Seredyski et al. [58] were perhaps the first researchers to propose the use of LCS as a game-

playing agent. They used CS-1 to encode agents that engaged in iterative two-by-two games with

their immediate neighbors. The agents were placed on a ring to enforce the neighborhood struc-

ture. Later, this work was extended to develop a task scheduler for parallel computing and was

reported in a series of papers, [94]–[96]. This work may also be considered the first application

of LCS to spatial games. The work demonstrated the strength of game-theoretic modeling using

LCS in designing effective and cooperative multi-agent systems for the environments requiring

both parallel and distributed control.

Bagnall et al. [97] used XCS to model game-playing agents to study the bidding policies

in an electricity market. Different XCS-based agents were introduced based on the type of

electricity production (e.g., nuclear and gas). The agents interacted in a simulation setting with

the goal of learning an optimal bidding strategy, across different electricity production scenarios,

to optimize two different objectives: to minimize capital losses and to maximize daily profit. The

agent architecture used two separate populations, each aiming to approximate the two objective

functions independently. An agent controller was used to determine the final action (i.e., the

per unit bidding price), based on the prediction obtained from the underlying populations. The

experiment’s results showed that the agents were able to adapt to different marketing mechanisms.

Some evidence of evolving a cooperative behavior was also found under certain scenarios.
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Interest in the role of agent-based systems in an electricity market has been renewed since

the popularization of the smart-grid concept [98]. Bagnall’s work demonstrated the potential of

game-theoretic LCS agent models for this important domain.

Meng and Pakath [99] and later, Gaines and Pakath [100], [101] used CS-1 and XCS,

respectively, to learn strategies in the traditional IPD game. The experiment’s results showed

better performance of LCS-based agents against pre-scripted strategies, including the infamous

Tit-for-Tat. A comparison of the two LCS approaches (i.e., CS-1 and XCS) was performed in

a study by [101]. The results showed that XCS performed better than CS-1 when dealing with

deterministic opponents, while CS-1 performed better when dealing with stochastic opponents.

IPD is one of the most studied games in EGT [102], with evolutionary algorithms commonly

used to evolve evolutionarily stable strategies. However, most work in this area has focused on

the monolithic agent models, with a single population used to evolve the best strategy. LCS, as

shown in the above studies, provide an intuitive and clear way to extend this work in a multi-

agent setting, allowing the investigation of heterogeneous agents’ interactions in the iterative

game environment.

Hercog and Fogarty [29] used a ZCS in a multi-agent simulation setting to study emergent

dynamics in an “El Farol Bar” (EFB) problem. EFB, later generalized as “minority games” [103],

models social dilemma situations in which unique game solutions may not exist and agents may

need to take a more practical approach to reach a decision, such as forming hypotheses or

learning from experience. This leads to a continuously evolving equilibrium. More recently,

Hercog [104] extended the above study and used an XCS to model agents for an EFB variant

that considered multiple bars. The authors contended that such modeling and simulation studies

could be beneficial for benchmarking multi-agent learning and analyzing coordination problems.

This work highlighted the ability of game-theoretic LCS agents to provide insights into both

micro- and macro-level behaviors in complex dynamics.

Takadama et al. [105] used a Pittsburgh-style LCS for modeling an evolutionary agent in a “bar-

gaining game”. Although the focus of this study was the validation of multi-agent simulations, it

was one of the few pieces of work reported in this review to use Pittsburgh-style LCS in a game

setting. Three different agent learning architectures were tested, including LCS, evolutionary

strategy and an RL-based agent. The bargaining game was used as the simulation model. This

work highlighted that because of high variation between multiple simulation runs, more research

is needed to design LCS methods that can be validated in these simulation environments.
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Mailliard et al. [106] used a simplified version of CS-1 as a learning mechanism for social

behavioral rules in an organized theory of actions framework. Their simplified LCS implemented

neither a GA for rule discovery nor the bucket-brigade algorithm for the credit apportionment.

Instead, they focused on modeling the action selection in LCS, based on different social satisfac-

tion levels, computed as a function of stakes or weights associated with each social relationship

and the corresponding expected payoffs. An exploratory study was conducted using the standard

PD game to investigate the types of action strategies learned by LCS and the corresponding

effects on the game dynamics. This work showed the utility of LCS in performing strategic

analysis using game-theoretic models.

Xianyu and Yang [107] used LCS-based agents in a co-evolutionary spatial game-theoretic

setting to study the fairness behavior in an “ultimatum game”. In contrast with classical EGT,

which allows homogeneous mixing of agents, spatial games [108] provide a useful platform to

model and study the effect of neighborhood structure on the evolution of cooperation. The

conventional approaches use replicator dynamics to model evolutionary dynamics in spatial

games. This work was one of the few studies to explore the use of machine learning agents, and

perhaps the only one after Seredyski et al. [58] to explore the use of LCS in spatial games. CS-1

was used to model agents and the game was studied on both small-world and scale-free networks

under perfect and imperfect information conditions. This work further supported the observations

we made above on Pakath’s work [99], that LCS provide far richer modeling opportunities for

EGT than conventional GA-based models. In summary, the selected work reviewed in this section

has highlighted the strengths of LCS as a versatile modeling framework, flexible knowledge

representation, learning mechanism and communication interface for studying complex dynamics

using strategy games.

VI. DISCUSSION

Table I summarizes the literature survey presented in Section V across three features: type

and sub-type of games to which LCS is applied; names of games; and types of LCS used to

model agents in these games. The earliest application of LCS to games occurred in the mid

1990s. The initial studies mostly used Holland’s CS-1 in their models. Later, the focus shifted

to the use of XCS, which became the most frequently and successfully used classifier system in

this literature. However, the original LCS models continue to be used to this day.
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TABLE I

SUMMARY OF LCS LITERATURE ON GAMES.

LEGEND: YOP=YEAR OF PUBLICATION; TOG=TYPE OF GAME; SUB-CAT=SUB-CATEGORY OF GAME; NOG=NAME OF

GAME;TOLCS = TYPE OF LCS

Ref YOP TOG Sub-Cat NOG TOLCS

[58], [94] 1995 Strategy Restricted games Ring Game CS-1

[97] Strategy Non-cooperative games Electricity Market XCS

[99] 2001 Strategy Non-sequential, non-cooperative Iterated Prisoner’s Dilemma CS-1

[29] 2002 Strategy Minority El Farol Bar ZCS

[60]–[62] 2002 Role playing MMORPG Ryzom MHiCS

[66] 2003 Role playing Multi-agent RoboCup XCS

[73] 2003 Role playing Multi-agent Tank Battle ZCS

[90] 2003 Simulation Education, policy Business Simulator XCS

[82], [83] 2005 Combinatorial Board Connect4 XCS

[86] 2005 Strategy Various Nim, IPD, Matrix Choice XCS

[68]–[72] 2005 Role Playing Multi-agent Robosoccer XCS

[63] 2006 Role Playing Single-agent V-Man XCS

[106] 2007 Strategy Non-sequential, non-cooperative Prisoner’s Dilemma CS-1

[74], [75] 2008 Role Playing Single-agent Wargus XCS

[76] 2009 Role Playing Single-agent Unreal Tournament Pittsburgh-style

[107] 2010 Strategy Sequential, Non-cooperative Ultimatum Game CS-1

[77] 2010 Role Playing Multi-agent Robocode XCS

[81] 2010 Role Playing Single-agent Pac-Man OCS

[88] 2011 Combinatorial Board Dots and Boxes ARCS

[78] 2011 Role Playing Single-agent Battle Game ZCS

[91] 2011 Language game Language Game XCS

[104] 2013 Strategy Minority Multi EFB XCS

[80] 2013 Role Playing Single-agent Battleship XCS

[92] 2014 Simulation Policy Stock Market XCS

[64] 2015 Role Playing Single-agent Air-Combat EDS
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A key feature that has been highlighted by this survey is the flexibility of LCS, which allows

modeling, both simple as well as meta-learning agent architectures, under the same framework.

This powerful feature can be leveraged in scaling LCS to higher-fidelity and more complex

game environments. The methods used to represent the interfacing environments, or the type of

input to the system, and encoding classifiers seemed to play a significant role in the performance

of LCS-based agents. While binary encoding was the dominant method used in the reviewed

approaches, this could be limiting in providing adequate control resolution and the range of

behaviors that the agents could exhibit. The use of real-valued [109], [110] or other types of

encoding [111], [112] could be explored, with consideration given to their own costs [113].

Most of the reviewed works were published in conferences or workshops. A major shortcoming

of most publications was that they did not provide important implementation details for non-

LCS users, making it harder to adopt LCS for games outside the LCS research community. The

availability of online source codes for specific LCS-based game agent implementations could

help improve the visibility of these approaches, as well as their acceptance by the wider research

community. Many of the reviewed works did not provide a deep analysis of the system and its

performance, especially for more complex system implementations, such as MHiCS. Therefore,

the development of analysis tools for game environments is another important research direction

in this field.

The application to games of classical AI techniques, such as finite-state-machines, scripting,

case-based models, and decision trees, has a long history and the techniques continue to be

used to this day. However, the need to depart from such techniques and begin to use more

advanced AI developed at the beginning of the new millennium, as the demand for more

dynamic, challenging, and interactive game design increased [114]–[116]. This trend continues

to grow, as the maturation of new technologies, such as virtual reality and immersive games,

demands more creative and real-time behavior from artificial agents. Traditional AI techniques

offer simplicity, a faster response time, and lower demand for resources and therefore, are often

preferred over the advanced AI/CI techniques. However, such techniques are mostly inflexible

as they are constrained with their own pre-programmed knowledge. While LCS share many of

these difficulties with their counterparts, they have major advantages for game developers, such

as their design flexibility; their ability to be applied to real-time environments; their ability to

learn continuously and adapt in dynamic environments; and the model transparency.
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VII. FUTURE DIRECTIONS

A wide range of games exists in all of the categories discussed in Section IV in which LCS-

based agent approaches have not been applied. Comparative studies between LCS and other CI-

based agent approaches in popular games (e.g., Dove and Hawkes, Snow Drift, Chess, and Go),

are warranted. Simple game environments, such as RoboCode, can be used as a useful platform

for the evaluation and further development of LCS, especially in multi-step environments.

It will also be interesting to explore other types of LCS for games. Specifically, there are

limited applications of Pittsburgh-style LCS in games. Recent advances in this discipline [117],

[118] provide important research opportunities to be explored.

In this section, we offer ideas for future directions related to LCS for games. Each of these

ideas represents an under-explored research area that has the potential to advance both LCS and

games research.

A. Architectures for Games

One primary advantage of LCS that has not been fully explored is that these systems come

with an architecture. Such an architecture can offer a structured way to decompose and manage

complex problems. For example, a large body of literature exists on evolutionary games and

evolutionary spatial games, which are dominated by the application of conventional GA-based

agent approaches. LCS-based agent technologies can contribute significantly to this field by

providing more flexible and function-rich agent architectures that allow agents to learn from

previous interactions, in addition to being evolutionary.

B. Symbolic Non-Symbolic Dilemma

For most recreational games, possibly the most important performance-based objectives are to

deliver believable actors and to win the game. Believability of character is a challenging issue. It

can be handled in a data-driven manner, through fast exploration of a large search space to make

wise and smart decisions. This has created a demand for methods that are fast, can explore a large

space of possibilities, and make decisive winning decisions. Non-symbolic methods that are fast,

such as neural networks [119], deep networks [120], and Monte-Carlo tree search [121], [122],

offer alternatives to symbolic methods and have been shown in the literature to have different

levels of success. However, these approaches lack the expressive power to explain decisions in

classic reasoning. Another way to achieve believability is to explore symbolic methods. In the
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absence of optimized implementations and appropriate architectures [85], these methods can be

slow in contexts requiring believability. However, they can offer rational decisions that can be

explained by traversing the rules in the knowledge base.

Implementations of LCS (e.g., XCS), integrate non-symbolic RL and symbolic rules mecha-

nisms. In a similar fashion, it is plausible to investigate a hybrid approach that uses LCS to learn

meta-strategies while a neural network or a Monte-Carlo method is employed to implement the

specifics of these strategies. The combination of symbolic and non-symbolic methods in LCS

has had successful outcomes in other areas, such as data mining [112], [123] and robotics [27].

Other recent work has explored the use of genetic network programming [124] and Boolean

networks [125] representations within the hybrid LCS models.

C. Reasoning in LCS for Games

The symbolic nature of LCS offers an opportunity to reason in games. This level of reasoning

can be used to explain actions for users, which could help them to diagnose their performance,

train faster, or conduct post-action reviews. However, the learning ability of LCS comes with

a disadvantage; that is, many rules can be generated, leading to large rule sets and hence low

interpretability. Moreover, some implementations, such as XCS, generate rules locally, and this

causes the rule set to increase rapidly, with many overlapping rules.

The above problems have been addressed in the LCS literature, but these solutions have not

been tried in the application of LCS to games. Some of these methods clean the population

in an offline model [126], [127], while others compress the population in real time as learning

occurs [128].

D. Role of LCS Role in Interactive Simulation

Interactive simulations have many uses for education, training, and planning [129]. The value

of these simulations increases when the system is able to diagnose users’ actions and offer

corrective actions. In this scenario, the objective is not to learn the game or the simulation itself,

but to build a model of the user to explore ways of improving user performance. Therefore,

interaction can be adaptive in response to the users’ performance.

Non-symbolic methods are not useful for handling this problem type. They cannot offer

diagnostic capabilities for users; nor can they offer a reasoning chain to explain to the users the
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implications of their actions. LCS offer an opportunity for these simulations to diagnose and

reason about users’ actions.

VIII. CONCLUSIONS

LCS are one of the earliest evolutionary computing techniques and are a continuously growing

field of research, providing a natural development platform for computer games. In particular,

due to their roots in computational cognition and symbolic representation, LCS are ideal to

facilitate interaction between a game and a human, in addition to their natural use as an adaptive

learner.

This survey is the first to provide a review of the extant LCS research in games. By reviewing

diverse LCS applications in a variety of games, this survey brings to attention the potential of

LCS for this field. The survey has offered insights into several future directions, ranging from

examining learning architectures and symbolic and non-symbolic dilemmas, to reasoning and

the use of LCS to mediate adaptively in interactive games. These directions offer significant

opportunities to researchers in both LCS and games.

This survey is timely, in that both computer games and LCS are growing research areas with

many advancements. These advancements have obvious implications for either field. It is hoped

that by presenting a consolidated review of the extant work, this survey will prove to be a

stepping-stone in triggering the required research interest in leveraging on these advancements

and exploring this important area of research.
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